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Figure 2.34: Example 2.15: Temperature control without anti wind-up

disturbance has changed back to its normal value).

[End of Example 2.15]

2.7.3 Measurement noise. Signal variance

Introduction

You have already seen the problems concerning measurement noise in a
control loop, cf. Section2.6.7. Figure 2.22 shows where the measurement
noise enters the control loop. Section2.6.7 describes a necessary
modification of the derivative term in a PID controller: A lowpass filter is
inserted before (in series with) the D-term to attenuate the noise before it
is time-differentiated to avoid too large noise-generated responses in the
control signal. But what if the lowpass filter in the D-term does not give
sufficient noise filtering? Then an additional filter should be included in
the feedback path, acting on the measurement signal. This filter can be
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Figure 2.35: Example 2.15: Temperature control with anti wind-up

• either a linear dynamic lowpass filter,
• or a deadband filter.

These solutions are described in more detail below.

Calculating the variance

Measurement noise is typically a random signal. The noise propagates
through the control system via the controller, causing variations in all
variables in the control system. Figure 2.36 shows typical examples of a
noisy process measurement and the control variable and in a simulated
control system. The variances shown in the figure are calculated as
explained below from the 50 most recent samples.

To express the variation of a process variable, the statistical variance can
be calculated, alternatively the standard deviation which is the square root
of the variance. The larger variance, the larger the variations. The
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[s]

Figure 2.36: Typical examples of a noisy process measurement and the control
variable

variance is the mean square deviation about the mean value11

Var(ym) =
1

N − 1
NX
k=1

[ym(tk)−mym ]
2 (2.77)

where N is the number of samples and mym is the mean value of ym, which
may be calculated by

mym =
1

N

NX
k=1

ym(tk) (2.78)

The numerical value of the variance is usually not particularly useful in
itself, but it is useful when comparing signals.

In Example 2.16 variances will be used to express the improvements by
using a lowpass filter on the process measurement signal.

11To obtain a so-called nonbiased estimate of the variance, you must divide by N − 1,
not by N .
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Using a dynamic lowpass filter

Figure 2.37 shows a control loop having a lowpass filter acting on the
measurement signal. The filter can be a discrete-time filter implemented in
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Figure 2.37: Control loop having a lowpass filter acting on the measurement
signal. (LP = lowpass.)

the control equipment. It is common that control equipment have inbuilt
lowpass filter functions. Alternatively, the filter can be a continuous-time
lowpass filter implemented using electronic components external to the
control equipment. For example a first order filter can be implemented as
an RC-circuit.

Let us assume that the measurement lowpass filter is a first order filter.
Such a filter has the following transfer function from filter input xin to
filter output xout:

xout(s)

xin(s)
= H(s) =

1
s
ωb
+ 1

=
1

s
2πfb

+ 1
(2.79)

The bandwidth of the lowpass filter is ωb = 2πfb where ωb has unit rad/s
and fb has unit Hz. The bandwidth must be given a value which is smaller
than the frequency of the substantial noise frequency components so that
these components fall within the stopband of the filter. The bandwidth
may be tuned experimentally. Figure 2.38 shows a typical amplitude gain
function of first order lowpass filter. One example of a noise frequency
component is shown in the figure (it is in the stopband of the filter). The
bandwidth is typically defined as the frequency where amplitude gain is
1/
√
2 = 0.71 ≈ −3dB.
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Figure 2.38: Typical amplitude gain function of a lowpass filter. One example
of a noise frequency component is shown.

Example 2.16 Measurement noise filter in a control loop

In this example a control system for a process having the following transfer
function model is simulated:

y(s) =
Ku

(T1s+ 1) (T2s+ 1)
e−τs u(s) (2.80)

+
Kv

(T1s+ 1) (T2s+ 1)
e−τs v(s) (2.81)

(The process is thus a second order system with time delay.) u is the
control variable, and v is the process disturbance. The process parameter
are

Ku = 1; Kv = 1; T1 = 1s; T2 = 0.5s; τ = 0.3s; (2.82)

The PID parameters are

Kp = 2.8; Ti = 1.2s; Td = 0.3s; (2.83)

(tuned with the Ziegler-Nichols’ closed loop method). Figure 2.39 shows
simulated responses in the control system. The measurement noise is a
random signal uniformly distributed12 between −1 and +1. The lowpass
filter acts on the process measurement, cf. Figure 2.37. It is switched into
the loop at t = 10s. From Figure 2.37 we see that the filter removes noise
from the process measurement and that the control variable (therefore) is
less noisy. The filter is a first order lowpass filter with bandwidth 1.5Hz.
12which means that there is equal probability for any value between −1 and +1.
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Figure 2.39: Example 2.16: Simulated responses of a control system. A lowpass
filter acting on the process measurement signal is switched into the control loop
at t = 10s.

Table 2.1 shows the variances of the control signal u and the process
measurement (after the filter) without and with lowpass measurement
filter. The variances are calculated from the 50 most recent signal samples.
It is clear from the variances that the filter reduces the influence of the
noise in the loop.

Without Filter With Filter
Var(u) = 36.4 Var(u) = 5.2
Var(ym) = 0.33 Var(ym) = 0.13

Table 2.1: Variances of control signal u and measurement signal ym without
and with lowpass filter

[End of Example 2.16]

Including a filter in the control loop changes the dynamic properties of the
loop! Actually, it can cause stability problems in the control loop. In most
cases, the less bandwidth (i.e., more sluggish filter), the more reduction of
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the stability of the loop.

Example 2.17 Poor stability because of measurement filter

Figure 2.40 shows simulated responses for the same control system
simulated in Example 2.16. Before t = 10s there is no lowpass filter in the
loop, while after t = 10s a first order lowpass filter with bandwidth 0.2Hz
is switched into the loop. The filter causes the control system to have very
poor stability.

Figure 2.40: Example 2.17: A first order lowpass filter is switched into the
control loop at t = 10s, causing the control system to have poor stability.

[End of Example 2.17]

If a measurement filter results in poor stability of the control loop — how
can that problem be avoided? By tuning (or re-tuning) the controller with
the filter in the control loop.

It is tempting to select a very small bandwidth of the measurement
lowpass filter to achieve strong attenuation of the measurement noise. But
in addition to attenuating noise, also frequency components in the ideal
(noise-free) process output signal is attenuated. In other words: Important
process information may be removed from the measurement signal. This in
turn may cause the controller to calculate the control signal on basis of an
erroneous control error value. One way to solve this problem, is to
introduce a similar filter in series with the setpoint, as shown in Figure .
This solution is equivalent to placing one filter in series with (or before)
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the PID controller in Figure 2.41. A setpoint filter implies that the
setpoint which the controller observes, becomes more sluggish since high
frequency components are attenuated.
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Figure 2.41: Lowpass filter acting on the setpoint

Using a deadband filter

If you know the maximum amplitude of the measurement noise, the noise
can be removed from the noisy measurement signal by letting the signal
pass through a deadband filter, see Figure 2.42. The output value of the
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Figure 2.42: Deadband filter acting on the process measurement signal

deadband filter changes value only if the change of the input signal is
larger than the deadband.
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Example 2.18 Deadband measurement filter in the control loop

Figure 2.43 shows a simulation of a control system with deadband
measurement filter. The process and the PID controller are as described in
Example 2.16. In the simulation the measurement noise is a random signal

Figure 2.43: Example 2.18: Simulation of a control system with deadband
measurement filter

uniformly distributed between −1% and +1%. The deadband of the filter
is 2%. The simulation shows the following:

• Up to time t = 10s the setpoint is constant (50%). The measurement
signal which is the output of the deadband filter is constant since the
amplitude of the noise is smaller than the deadband. And since the
measurement signal is constant, the control signal generated by the
controller is constant — which is good!

• At t = 10s the setpoint is changed as a step (from 50% to 51%)
which implies that the measurement signal due to the overshoot in
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the step response changes value beyond the deadband of 2%.
Thereafter the deadband filter acts similar to an on/off-element in
the loop, and there are sustained oscillations in the loop — not good!

[End of Example 2.18]

You have in this Section seen two ways of filtering measurement noise:

• Using a dynamic lowpass filter : The dynamic filter can be easily
tuned via the bandwidth. The filter influences the dynamics and
hence the stability of the loop. The controller should be tuned with
the filter in the loop.

• Using a deadband filter : This filter may give a constant measurement
signal, as long as the input signal to the deadband filter does not
change more than the deadband of the filter. Once the deadband is
exceeded, the deadband filter may behave almost like an on/off
controller, causing oscillations in the control loop.

From the above results it seems that the dynamic filter is a safer way than
deadband filter to handle measurement noise.

2.8 Performance index of control systems

Assume that different control systems are to be compared, or that different
controller parameter for one control system are to be compared. There are
several ways to express the performance of the control systems, e.g.
bandwidth and stability margins. These measures are based on a
mathematical model of the control system, and they are described in
Chapter 6.

Alternatively, we can use performance indices which are functions of the
observed control error e. These indices does not require a mathematical
model. Probably the most frequently used index is the IAE — Integral of
Absolute value of control Error [15]:

IAE =
Z ∞

0
|e| dt (2.84)

The less IAE value, the better performance. The IAE value is finite only if
e converges towards zero in steady-state, which in practice requires the


