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Abstract

The Unscented Kalman Filter (UKF) with a proper
state augmentation is applied to a physical anaero-
bic digestion (AD) reactor for estimation of physical
state variables and unknown concentrations of the
reactor feed. The model on which the estimator is
based is a first principles mathematical model of the
reactor with four state variables originally developed
by D. T. Hill (1983), but modified in this study. The
model is adapted to the AD reactor using data from
online sensors and lab analysis. The traditional Ex-
tended Kalman Filter (EKF) is also applied to the
reactor. EKF gives similar performance as the UKF,
but the UKF is easier to reconfigure when the model
is changed.

Keywords: State estimation; Unscented Kalman Fil-
ter; State Augmentation; Anaerobic Digestion Reac-
tor.

1 Introduction

1.1 Background

Anaerobic digestion (AD) of animal wastes can pro-
duce biogas with methane to be used as an energy
source (Tchobanoglous et al, 2003). Moreover, AD
reduces methane emission, odours and contaminants.
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AD bioreactors are effective as they allow for rela-
tively high load rates (feed rates) and small reactor
volumes.

It is desirable to have a computer-based state estima-
tor for an AD reactor for several reasons:

• To have estimates of non-measured state vari-
ables for the purpose of monitoring and con-
trol, possibly in a state-feedback based control
system. The most important state in this re-
spect is the (total) concentration of volatile fatty
acids (VFA). High VFA concentrations are in-
hibitory to methane generating microbes, called
methanogens, and may cause reactor instability.
It is desirable if VFA concentration can be esti-
mated continuously. An online VFA analysator
is not feasible in most applications.

• To have estimates of concentrations in the reac-
tor feed. Such estimates can be used to indicate
the biogas potential of the feed.

• To have a methane gas flow estimate which is
less noisy than what is obtained from raw mea-
surements.

• To have a methane gas flow estimate in situa-
tions where biogas concentration sensors and/or
biogas flow sensors have an outage.

In this study state estimators are developed for a con-
tinuous flow pilot AD reactor of 220 L, which is a part
of Foss Biolab located at Foss dairy farm in Skien,
Norway (a description is given in the following sec-
tion). The state estimators are applied to simulated
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data and to measured data from the physical reac-
tor. The estimators are ordinary and augmented Ex-
tended Kalman Filters and ditto Unscented Kalman
Filters, and a simulation-estimator (or ballistic, open-
loop estimator). All estimators are based on a mod-
ified version of a first principles model of the reactor
with four state variables originally developed by D.
T. Hill (1983). The model has been adapted to the
AD reactor using data from online sensors and lab
analysis.

1.2 Foss Biolab and the anaerobic di-
gestion (AD) reactor

Foss Biolab is a pilot plant at Foss dairy farm in
Skien, Norway, for nutrient and energy recovery, see
Figure 1. Input to the plant is dairy manure, and out-
puts are high quality fertilizer and biogas consisting
of 70-75% methane. The plant is monitored and con-
trolled with a PC-based automation system running
LabVIEW.
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Figure 1: Foss Biolab, Skien, Norway

The main parts of the plant are as follows (the num-
bers refer to the figure): 1) A reservoir for raw dairy
manure containing approximately 25% added water.
2) A separator (filter) to separate the manure into
two fractions of similar total solid mass: >70 % of
the volume is the wetter fraction and < 30 % is the

dryer fraction. 3) A 220 L high rate AD reactor fed
with filtered cow manure as substrate for production
of energy-rich biogas that contains mainly methane.
4) A 200 L nitrification reactor fed with AD reactor
effluent to produce high quality liquid fertilizer and
pellets fertilizer from formed foam. The plant has
been operational since August 2011.

The present study is about the anaerobic digestion
(AD) reactor.

1.3 Outline of this article

The underlying mathematical model of the AD reac-
tor is described in Section 2. Application of the state
estimators to the AD reactor is described in Section
3. Conclusions are given in Section 4. The general
algorithms of the state estimators used in this study
are presented in Appendix A.

1.4 Computing tool

The estimators and simulators are implemented
in MATLAB/SIMULINK. The MATLAB Function
block in SIMULINK has shown to be very convenient
for implementation of the Kalman Filter algorithms
and simulators for the AD reactor. Input and out-
put parameters are automatically added to the block
as you edit the function header. Both scalars and
vectors can be used as inputs and outputs.

2 Hill’s anaerobic digestion
(AD) model

2.1 Introduction

In 1983, D. T. Hill (Hill, 1983) presented a mathe-
matical model of an anaerobic digestion (AD) process
using animal waste as feed. Hill validated the model
with real experiments. Features of Hill’s model are
as follows:

• It is a dynamic model (with differential equa-
tions) with the following states: Concentrations
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of

— Biodegradable volatile solids (BVS)

— Total volatile fatty acid (VFA)

— Acid-forming micro-organisms

— Methane-forming micro-organisms

• Different animal wastes can be assumed as feed:
Dairy, beef, swine, poultry. These cases differs
only in the biodegradability B0 and the acid fac-
tor Af (all other model parameters being the
same).

• VFA-based inhibition is included.

• Washout is included.

• Solids (biomass) retention time can be set larger
than the hydraulic retention time (emulating
fixed-bed reactors, UASB reactors).

• Temperature-dependency of reaction rates is in-
cluded.

• Methane gas concentration and flow is calcu-
lated.

• The following variables are not included in Hill’s
model: Total biogas flow (but methane gas flow
is included, cf. previous point), CO2, NH3, alka-
linity, pH.

2.2 Modified Hill’s model

2.2.1 Differences from original Hill’s model

A. Husain (1998) presented Hill’s model with more
details regarding chemical reactions. Also, Husain
changed some of the model parameter values, and
the death rate of micro-organisms was modeled as a
VFA-based Monod function in stead of as a constant.
Husain’s modification of Hill’s model (Husain, 1998)
is used as the basis for the model used in our (the
present) study.

In our study we have made the following changes to
the model presented in (Husain, 1998). We denote
the resulting model “Modified Hill’s model”.

• Parameters k1, k2, k3, k4 and k5, replaces orig-
inal parameters (yields) 1/Y , (1− Y )/Y , 1/Yc,
and kmeth(1− Yc)/Yc. These coefficients are es-
timated (except k3 which is calculated from the
parameter values in the original Hill’s model).

• Biodegradable volatile solids (BVS) Sbvs is rep-
resented with sCOD, not as a fraction of VS.

• Influent VFA, Svfain , is independent of influent
BVS, Sbvs.

• The Haldane functions in the reaction rates µ
and µc in Hill’s original model are replaced with
the simpler Monod functions:

µ = µm (T )
1

Ks

Sbvs
+ 1

(1)

µc = µmc (T )
1

Ksc

Svfa
+ 1

(2)

This makes the calculations with the model eas-
ier. Simulations indicate that the omission of
the terms Svfa/Ki and Svfa/Kic in the Hal-
dane functions has little impact on the responses
under the operating conditions assumed in the
present study.

• The Monod functions of the death rates are re-
placed with constant parameters:

Kd = 0.02 [1/d] (3)

Kdc = 0.02 [1/d] (4)

which is the same way of representing death rates
as in ADM1 (Batstone et al., 2002).

• In Hill’s original model (Hill, 1983), (Husain,
1998) the retention time of the biomass (here:
acidogens and methanogens) is equal to the re-
tention time of the organic material (BVS and
VFA) which is equal to the hydraulic retention
time:

Td =
V

F
(5)

However, it is reasonable to assume that the re-
tention time of the biomass is larger than the
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retention time of the organic organic material as
the biomass to some extent is attached to gran-
ules in the reactor, as in a fixed-bed reactor or an
UASB reactor. The factor b is here introduced
as the ratio between the retention times. Thus,
the retention time of the biomass is

Tdbact = bTd =
V

F/b
(6)

(In the original Hill’s model we would set b =
1.) Eq. (6) makes the model coherent with the
standard ADM1 model (Batstone, 2002) in this
respect, and also with the model presented in
(Bernard, 2001) which has been used successfully
to model an AD reactor using wine waste as feed.

2.2.2 Nomenclature in modified Hill’s model

• F [L/d] is influent or feed flow, which is equal to
effluent flow. It is also denoted the load rate.

• V [L] is reactor volume.

• T [oC] is reactor temperature.

• Fmeth [L CH4/d] is methane gas flow.

• Sbvs [g BVS/L] is concentration of biodegrade-
able volatile solids (BVS) in the reactor.

• Svfa [g VFA/L] is concentration of volatile fatty
acids (VFA) in the reactor.

• Xacid [g organism/L] is concentration of acid-
forming micro-organisms.

• Xmeth [g organism/L] is concentration of
methane-forming micro-organisms.

• Yc [g organism/g VFA] is yield coefficient of
methane-forming micro-organisms.

• Td [d] is hydraulic retention time:

Td =
V

F
(7)

where V [L] is reactor volume and F [L/d] is flow
= inflow = outflow.

• Retention time factor b which defines the ratio
of the hydraulic retention time to the biomass
retention time:

• Tdbact is the retention time of micro-organisms
(biomass):

b =
Tdbact
Td

=
V/F

V/(F/b)
(8)

• kmeth [unit one] is a methane gas factor.

• µ [d−1] is growth rate of acid forming micro-
organisms.

• µm (T ) [d
−1] is the temperature-dependent max-

imum growth rate for acid-forming micro-
organisms.

• µc [d
−1] is growth rate of methane forming

micro-organisms.

• µmc (T ) [d
−1] is the maximum growth rate for

methane-forming micro-organisms.

• Ks [g BVS/L] is Monod half-velocity constant
for acid-forming micro-organisms.

• Ksc [g VFA/L] is Monod half-velocity constant
for methane-forming micro-organisms.

• Kd [d−1] is specific death rate of acid-forming
micro-organisms

• Kdc [d
−1] is specific death rate of methane-

forming micro-organisms

2.2.3 Model equations in modified Hill’s
model

The modified Hill’s model is as follows. The differen-
tial equations stems from mass balances of the perti-
nent components.

Ṡbvs = (Sbvsin − Sbvs)
F

V
− µk1Xacid (9)

Ṡvfa = (Svfain − Svfa)
F

V
+ µk2Xacid − µck3Xmeth

(10)
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Ẋacid =

�
µ−Kd −

F/b

V

�
Xacid (11)

Ẋmeth =

�
µc −Kdc −

F/b

V

�
Xmeth (12)

Fmeth = V µckmeth
1− Yc
Yc

k4
� �� �

k5

Xmeth = V µck5Xmeth

(13)
where

µ = µm
1

Ks

Sbvs
+ 1

(14)

µc = µmc
1

Ksc

Svfa
+ 1

(15)

where the maximum reaction rates are functions of
the reactor temperature as follows:

µm (T ) = µmc (T ) = 0.013T − 0.129

for 20◦C < T < 60◦C.

2.2.4 Known parameters in modified Hill’s
model

The following model parameters have known values:

• Reactor volume:

V = 220 L (17)

• The micro-organisms death rates are given the
same values as in the ADM1 model (Batstone et
al., 2002):

Kd = 0.02 d
−1 (18)

Kdc = 0.02 d
−1 (19)

• The “VFA-related” half-velocity constant for
methane-forming micro-organisms is assumed to
have the same value as in (Husain, 1998):

Ksc = 3 g VFA/L (20)

• The ratio between the concentration of the aci-
dogenic micro-organisms and the methanogenic
micro-organisms are assumed to be fixed, and
equal to

ram =
Xacid

Xmeth

= 0.34 (21)

This ratio is found from simulations of the orig-
inal Hill’s model (Hill, 1983) which reveals that
the ratio is varying slightly around 0.34 in quite
different operating conditions.

• Yield coefficient of methane-forming micro-
organisms:

Yc = 0.0315 g organism/g VFA (22)

• Methane gas factor:

kmeth = 0.5 [unit one] (23)

2.2.5 Adaptation of modified Hill’s model us-
ing real data

The following model model parameters in modified
Hill’s model have unknown values and are thus to be
estimated:

• Reaction parameters (yield parameters) k1, k2,
k3, k4, and k5.

• Half-velocity Monod-constant for acid-forming
micro-organisms, Ks.

• Retention time factor, b.

These parameters were estimated using offline-data
from laboratory analysis and online-data from sen-
sors. Offline-data used are sCOD and total VFA.
Online-data used are feed flow (loading rate), reactor
temperature, biogas flow, and methane gas concen-
tration. (The latter two provides methane gas flow.)
The time series selected for model adaptation starts
at t = 44 d (26. Sept. 2011) and ends at t = 63 (15.
Oct. 2011). 13. August 2011 is the reference point
of time, i.e. t = 0 d at that time. (The state esti-
mators will however be applied to a larger (longer)
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time series, ending at t = 149 d.) Figure 2 shows this
time series. The pertinent time interval was selected
to include variations of both feed flow and reactor
temperature. In the upper plot are the real feed flow
and reactor temperature. In the lower plot the blue
curve represents the produced methane gas flow. The
red curve in the lower plot represents the simulated
methane gas flow using the adapted model. The sim-
ulation is commented in Sec. 2.2.6.
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Figure 2: Upper plot: Real feed flow and reactor tem-
perature. Lower plot: Real and simulated produced
methane gas flow. The sudden stops in the feed flow
are due to blockings.

The gas flow time series shown in Figure 2 has some
large outliers. These ouliers are caused by power
outage and/or gas blocking. Such outliers can cause
problems for controllers and estimators. Removal of
outliers is described in Section 3.2.2.

The model was adapted using data from both a
steady-state operating point at t = 44 d applied to
a steady-state version of the model (to get rid of the
time-derivatives in the model) and by adjusting pa-
rameter k4 in iterated simulations so that simulations
with the dynamic model correspond well to the dy-
namic responses from t = 44 to 63 d. In this way both

steady-state data and dynamic data are exploited for
model adaptation in a simple way.

In the pertinent operating point (t = 44 d) used for
parameter estimation, the model variables have the
following values:

• Feed flow:
F = 25 L/d (24)

• Reactor temperature:

T = 24.1 oC (25)

• Influent and effluent concentrations of BVS in
terms of sCOD as found in laboratory analysis:

Sbvsin = 13.4 g sCOD/L (26)

Sbvs = 4.45 g sCOD/L (27)

• Influent and effluent concentrations of (total)
VFA as found in laboratory analysis:

Svfain = 3.40 g/L (28)

Svfa = 0.407 g/L (29)

• Methane gas flow Fmeth (given as the product of
total biogas flow Fbiogas — detected with an on-
line gas flow sensor — and methane concentration
cmeth detected with an online gas concentration
sensor):

Fmeth = 128 L/d (30)

The results of parameter estimation are as follows:

b̂ = 56.6 (31)

K̂s = 32.8 (32)

k3 = 31.7 (33)

k4 = 1.60 (34)

k5 = 24.6 (35)

X̂meth = 1.07 (36)

X̂acid = Xmethram = 3.65 (37)

k̂1 = 12.7 (38)

k̂2 = 5.11 (39)
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2.2.6 Simulated vs. measured responses

In Figure 2, the red curve in the lower plot represents
the simulated methane gas flow using the adapted
model. The initial state for the simulation is set equal
to the steady-state values at t = 44 which are (27),
(29), (36) and (37). The model apparently represents
important dynamic properties of the real reactor after
that period. In subsequent time interval the model
does not fit that well, but this is to be expected since
we input and environmental conditions change. Par-
ticularly, from around t = 84 d, the reactor started
to behave apparently abnormally with a declining gas
production for approximately 15 days. However, this
interval, too, is included in the data set applied with
state estimation in this report.

3 Application of state estima-
tors to the AD reactor

In the subsequent sections various state estimators
are applied to both a simulated and the real AD re-
actor.

3.1 Selection of ultimate estimator
from simulation study

In this section various estimators will be compared in
a simulation study. The purpose is to get a basis for
selecting the most proper estimator to be applied to
the real AD reactor.

The list below shows the estimators which are com-
pared. A detailed description of each of the estimator
are given in the referred section (in the Appendix).

• Simulation-estimator, cf. Section A.3.

• Ordinary Unscented Kalman Filter (UKF) with
no augmentation, cf. Section A.5. The state
vector is

x = [Sbvs, Svfa,Xacid,Xmeth]
T

(40)

= [x1, x2, x3, x4]T

The control variable (manipulating variable) is

u =
�
F
�
=
�
u1

�
(41)

The measurement (process output) is

y =
�
Fmeth

�
=
�
y1
�

(42)

• Ordinary Extended Kalman Filter (EKF): Same
state vector as for ordinary UKF (see above).

• Augmented UKF with Svfain as augmentation
state, cf. Sections A.5 and A.6. The state vector
is

x = [Sbvs, Svfa,Xacid,Xmeth, Svfain ]
T(43)

= [x1, x2, x3, x4, x5]T

u and y are as above.

• Augmented EKF: Same state vector as for Aug-
mented UKF (see above).

In the simulations presented in the following the ini-
tial state of both the “real” reactor and the estima-
tors corresponds to the approximately steady-state
operating point of day 44 in Figure 2. Values of pa-
rameters and states are as presented in Sections 2.2.4
and 2.2.5.

The ordinary EKF and UKF are equally tuned, i.e.
xapost(t0), Papost(t0), Q and R are the same for the
two estimators. Also, the augmented EKF and UKF
are equally tuned.

The challenge to the estimators is to estimate the
states when there is a model error related to VFA
concentration of the feed, Svfain . At the selected
operating point we have from lab analysis that

Svfain0 = 3.40 g/L (44)

This value is used for Svfain in the various state esti-
mators. To impose a model error it is assumed that
the “real” (correct) value is

Svfainreal = Svfain0 +∆Svfain (45)

= 3.40 g/L+ 2 g/L (46)

= 5.40 g/L (47)
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Svfainreal is used in the simulator representing the real
reactor, while Svfain0 is used in the state estimators.

Figures 3 — 6 shows results of a simulation from t =
0 to 2 days with the various state estimators. The
feed flow F is constant at 25 L/d, and the reactor
temperature is constant at 24.1 oC.

• Figure 3 shows the estimates of the states Sbvs =
x1 and Sbvs = x1.

• Figure 4 shows the estimates of the states
Xacid = x3 and Xmeth = x4.

• Figure 5 shows the estimate of the augmentation
state, Svfain = x5.

• Figure 6 shows the Kalman Filter gains for the
augmented EKF and the augmented UKF.
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Figure 3: State estimation of simulated AD reactor:
Sbvs = x1 and Svfa = x2.

Below are comments to the plots shown in Figures 3
— 6.

• Figures 3 and 4 show that the state estimation
errors are relatively small with the augmented
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Figure 4: State estimation of simulated AD reactor:
Xacid = x3 and Xmeth = x4.

EKF and UKF. With the non-augmented EKF
and UKF estimators the state estimation errors
are large. One explanation is that the estima-
tion errors in the ordinary states kind of com-
pensates for the model error regarding Svfain .
This “compensating” state estimation error can
be even larger than the state estimation error
present with the simulation-estimator. This is
demonstrated in Figure 7 where the system is
simulated for 50 days.

• Figure 5 shows that the augmented EKF and
UKF estimates the partly unknown parameter
Svfain relatively well.

It is interesting to observe that the EKF and
the UKF performs very similarly (they are tuned
equally).

The estimation of parameter Svfain is appar-
ently beneficial also for the estimation of the
“original” states, Sbvs, Svfa, Xacid and Xmeth

since with the augmented estimators the estima-
tion errors for these states are small, cf. the
previous figures.
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Figure 5: State estimation of simulated AD reactor:
VFA concentration in influent, Svfain = x5 (augmen-
tation state)

• Figure 6 shows that the Kalman gains are quite
similar in (augmented) EKF and UKF. This is an
interesting observation since the mathematical
formulas for the Kalman gains are apparently
very different.

• Figures 3 — 4 indicate that the performances
of ordinary EKF and UKF and of augmented
EKF and UKF are similar. In the simulations
there are no process noise and no measurement
noise. In Example 14.2 in (Simon, 2006) which
involves process and measurement noise in a non-
linear system, a significant improvement regard-
ing noise contents in the state estimates is ob-
tained with UKF compared with EKF.

From the results presented above it can be concluded
that the two best estimators for the AD reactor, and
probably in many other applications too, are the aug-
mented EKF and the augmented UKF. Then, how to
select among these two? The UKF is designed to give
smaller estimation errors than EKF do for nonlinear
systems in the case of random process and measure-
ment noises. The AD reactor model is nonlinear, so
it can be assumed that the performance of the UKF
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Figure 6: Kalman filter gains for the augmented EKF
and the augmented UKF

is better than of the EKF. In the present study both
augmented EKF and augmented UKF has actually
been applied to real, noisy data for the AD reactor,
but there were no significant difference, probably be-
cause the effects process noise and measurement noise
are relatively small compared to the effects of model
errors.

In addition to the potential benefit related to perfor-
mance, the UKF is simpler do design and implement
since the linearization of the system function and the

Figure 7: Estimated Sbvs and Svfa simulated for 50
days.
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measurement function is not needed. (Of course, lin-
earization may be necessary for other reasons, like
analysis of dynamics and local stability.)

Consequently, the augmented UKF is selected as the
prefered estimator for the AD reactor.

3.2 Application to real reactor

3.2.1 Experimental conditions

In Section 3.1 the augmented UKF was pointed out
as the prefered estimator for the AD reactor. The
augmentation state was Svfain . However, when ap-
plying the UKF to data from the real AD reactor,
also the other feed component, Sbvsin , will be esti-
mated. Hence, the UKF with both Svfain and Sbvsin
as augmentation states will be applied. The state
vector is

x (48)

= [Sbvs, Svfa,Xacid,Xmeth, Svfain , Sbvsin ]
T

= [x1, x2, x3, x4, x5, x6]T

All estimators are used with values of real flow, re-
actor temperature and methane gas flow data from
t = 44 d (26. Sept. 2011) to 149 d (9. Dec. 2011).
However, outliers are removed in the methane gas
flow data, cf. Section 3.2.2.

For all estimators the initial values of the original
states, Sbvs, Svfa, Xacid and Xmeth, as found from
the steady-state operating point at t = 44 d are as
follows:

Sbvs0 = x10 = 4.45 (49)

Svfa0 = x20 = 0.407 (50)

Xacid0 = x30 = 3.65 (51)

Xmeth0 = x40 = 1.07 (52)

The augmentation states have the following values at
t = 44 d:

Svfain = x50 = 3.40 (53)

Sbvsin = x60 = 13.4 (54)

To introduce a model error in the applications, the
initial values of both ordinary state variables and

augmentation state variables are set to 20% of their
known values given above.

3.2.2 Removal of outliers from raw data

Figure 2 shows the time series of feed flow, reac-
tor temperature and methane gas flow which will
used with the state estimator. The gas flow contains
several outliers caused by power outage and/or gas
blocking. Of course, such outliers will cause problems
for the estimator since they contain wrong informa-
tion about the real gas flow.

To remove the outliers a state estimator is used. Of
practical reasons, the state estimator used for outlier
removal is an ordinary Extended Kalman Filter which
is independent of the state estimator(s) used in other
parts of the experiments described in the following
sections. This is because in some of the experiments,
the (other) state estimators will produce “wild” es-
timates. The original (raw) measurement is substi-
tuted by the estimated measurement if the absolute
value of the difference between the original measure-
ment and the estimate is larger than a certain value,
which here is set to 10 L/d (methane flow). Figure 8
shows the positive result of the outlier removal.

3.2.3 Tuning the state estimator

The tuning parameters of the Unscented Kalman Fil-
ter are xapost(t0), Papost(t0), Q and R (these parame-
ters are defined in Appendix A.5). Of course, ideally
these parameters are set equal to their known values.
But, in practice these values are not known partic-
ularly well, except perhaps xapost(t0) and R. Good
guidelines are hard to find. Even a thorough book
as (Simon, 2006) gives little advice. In the present
study the following tuning procedure has been used.

• Initial estimated state xapost(t0) is set according
to a qualified guess which should be (49) — (54).
However, to introduce a model error in the ap-
plication, all the initial states are set to 20% of
their assumed known values (49) — (54).

• Initial state estimation error covariance

10
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Figure 8: Gas flow measurement - without and with
outlier removal

Papost(t0) is an n x n-matrix commonly
set as a diagonal matrix. In lack of other
options we can try setting the covariance of the
estimation error for state variable i equal to a
constant times the square of the guessed initial
state variable xiapost(t0):

Papost(t0)i,i =
�
kixiapost(t0)

�2
(55)

In the present study it is found by trial-and-error
that

{ki} = {1, 1, 1, 1, 1, 5} (56)

To be consistent with the assumptions about
model errors in the state variables, xapost(t0) is
here set equal to 20% of (49) — (54).

• Process noise covariance Q is in general a time-
varying n x n diagonal matrix, but it is usu-
ally set to a constant matrix. Assuming a
continuous-time estimator, it makes sense to
try relating the diagonal elements (prosess noise
variances) for the continuous-time noise covari-
ance matrix to the magnitude of the pertinent
state variables in the same way as for Papost

above. However, we can assume that the noise
constitutes only a fraction of the state variable:

Qci,i =
�
lixiapost(t0)

�2
(57)

In the present study it is found by trial-and-error
that

{li} = {8, 4, 4, 2, 10, 10} (58)

To be consistent with the assumptions about
model errors in the state variables, xapost(t0) is
here set equal to 20% of (49) — (54).

The UKF we use is a discrete-time estimator.
Therefore, we can use the following relation be-
tween the continuous-time process noise covari-
ance Qc and the discrete-time process noise co-
variance Q assuming the sampling time is Ts (Si-
mon, 2006):

Q = QcTs (59)

One benefit of using the continuous-time covari-
ance in the tuning of the UKF, is that the tun-
ing becomes more or less independent on the
sampling-time.

• Measurement noise covariance R is in general a
time-varying m x m matrix, but is usually set
to a constant matrix. For a continuous-time es-
timator, diagonal element number j can be es-
timated from a representative time-series of the
measurement yj :

Rcj,j = var (yj) (60)

To find the corresponding R for a discrete-time
estimator, we can use the following relation (Si-
mon, 2006):

R =
Rc
Ts

(61)

From a representative portion of the real time
series for the AD reactor, it was found that

Rc = var(y) = var(Fmeth) = 1.44 (62)

Assuming that xapost(t0), Papost(t0) and R have been
set from estimated or observed signal values, Qc re-
mains as the tuning parameter:

11



• Increasing Qci,i makes the estimate for state
variable xi converge faster to the assumed true
value, but with the drawback that the estimate
for xi becomes more noisy (caused by the in-
creased propagation of the measurement noise,
via the Kalman Filter gain(s)).

• Reducing Qci,i has the opposite effects.

The numerical values of the tuning parameters used
in the actual application to the AD reactor are not
presented here since sufficient information about the
tuning is given above.

3.2.4 Results and discussions

Figures 9 — 12 show estimated responses and mea-
surements (from online sensors and laboratory analy-
ses). The estimators use are:

• Unscented Kalman Filter with values of initial
states and tuning parameter as given in the pre-
vious sections.

• Simulation-estimator which is simply a simulator
using the same model and the same initial state
values as the UKF does. The reason for show-
ing responses with the simulation-estimator is to
demonstrate benefits or drawbacks by using an
advanced, feedback-based estimator as UKF. Af-
ter all, the simulation-estimator is vastly simpler
than the UKF, and requires no tuning except for
setting a proper initial state.

Comments and discussions to the results are given in
the following.

• Figure 9 shows in the upper plot the feed flow
and the reactor temperature and in the lower
plot the measured and estimated methane gas
flow.

The UKF estimates the gas flow accurately, but
it is typical for well-tuned error-driven estima-
tors that the measurement is estimated accu-
rately.
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Figure 9: Upper: Measured feed flow and reactor tem-
perature. Lower: Measured and estimated methane gas
flow

The simulation-estimator gives a very poor es-
timation of the methane gas, which is at least
due to the imposed model error (in the initial
state estimate, including the feed concentrations
of BVS and VFA).

• Figure 10 shows measurements and estimates of
the states Sbvs = x1 and Svfa = x2.

The UKF underestimates Sbvs, particularly af-
ter approximately t = 97 d. The underestima-
tion may indicate that only a part of the sCOD
detected in lab analysis constitues the substrate
for the biomass (microbes). This is an interest-
ing observation in itself because it indicates that
state estimators can be used to identify the frac-
tion of other, alternative substrate measures, like
TS, VS, TSS and VSS, which is used a substrate
for the biomass.

The increased underestimation of Sbvs after t =
97 d may stem from the fact that a new batch of
manure was taken into use at t = 87 d, and ac-
cording to the farmer this batch has a smaller
biogas production potential since it is fresher
than the previous batch.

12
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Figure 10: Measurements and estimates of the states
Sbvs = x1 and Sbvs = x1.

The UKF estimates Svfa to some degree. The
peaks and bottoms of the measurements are not
resembled, although their changes are somewhat
resembled.

For both Sbvs and Svfa the simulation-estimator
gives estimates which may be useful. It is diffi-
cult to evaluate the accuracy of these estimates.

Neither of the estimators resembles the clear
peaks in the analysis values. It is not clear if
these peaks are due to analysis errors or real val-
ues, or poor sampling procedures.

• Figure 11 shows estimates for states Xacid = x3
and Xmeth = x4. Since we do not have any
lab analysis of the biomass concentrations, Xacid

and Xmeth, it is difficult to determine the accu-
racy of the estimates. However, the UKF gives
estimates which are much closer to the calculated
values (51) — (52).

• Figure 12 shows estimates of the augmentation
states Svfain = x5 and Sbvsin = x6. We do not
know the reason for the big, abrupt variations of
the measurements of Svfain .

The simulation-estimator is of course not able
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Figure 11: Estimates of the states Xacid = x3 and
Xmeth = x4.

to estimate any other value of Svfain and Sbvsin
than is used as an input signal (parameter) in the
estimator, so the estimation is large, as expected.

UKF resembles quite well the measurements, de-
spite the large errors imposed on the initial val-
ues of the estimates. Sbvsin seems to be some-
what underestimated after t = 97 d, but the rea-
son may be the same as for the underestimation
of Sbvs as explained above.

• Although not shown with plots in this article,
the Extended Kalman Filter produced results
comparable with the Unscented Kalman Filter.
However, it was much easier to do the necessary
changes with the UKF when trying out various
models (augmentations). This is because the lin-
earization step is not needed in the UKF.

4 Conclusions

• The modified Hill’s model can represent a real
AD reactor (based on cow manure as substrate)
with sufficient accuracy to constitute the basis
for state estimators for the reactor.
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Figure 12: Measurements and estimates of the aug-
mentation states, Svfain = x5 and Sbvsin = x6.

• The Unscented Kalman Filter (UKF) is an at-
tractive alternative to the Extended Kalman Fil-
ter (EKF) mainly because it is much easier to
make the necessary changes in the algorithm
when various models are to be tried, because the
calculation of Jacobi matrices for linearization is
not needed.

• In general, the UKF has the potential of improv-
ing the estimates compared with EKF. With the
real data used in this project the results with
(augmented) EKF are almost the same as with
UKF.

• The robustness against (imposed large) model-
ing errors are greatly improved by augmenting
the state estimator with state variables repre-
senting more-or-less unknown parameters or in-
put signals. Augmenting the state estimators
with (unknown) feed concentrations Sbvsin and
Svfain is particularly beneficial since it improves
the estimates of the other state variables (this
was demonstrated in a simulation study).

• Estimation of feed concentrations Sbvsin and
Svfain can be valuable in itself as their values

can be used to predict the gas production of the
reactor and to indicate if the feed quality is in-
creasing or decreasing.

• Since the prosess output (measurement) is
predicted accurately in error-driven estimators
(UKFs), this prediction can replace measure-
ment outliers which increases the robustness of
the system in monitoring and control applica-
tions.
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A State estimator algorithms

A.1 Introduction

In this study a number of state estimators are ap-
plied to simulated data and measured data from
the physical reactor. The estimators are ordinary
and augmented Extended Kalman Filters and ditto
Unscented Kalman Filters (Simon, 2006), and a
simulation-estimator (a ballistic or open-loop estima-
tor). All estimators are based on a modified version of
a first principles model of the reactor with four state
variables originally developed by D. T. Hill (1983).
The model has been adapted to the AD reactor using
a data set from online sensors and lab analysis. The
estimators are compared with respect to accuracy of
the means of the estimates, noise suppression in the
estimates, robustness against model errors, estimator
tuning, and implementation issues.

In the following sections, the state-space model form
used in the estimators is defined. Then the state
estimator algorithms are presented.
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A.2 State-space model form

The various state estimator algorithms described in
this chapter are assumed to have the following form
(the notation mainly follows (Simon, 2006)):

x(tk+1) = f [x(tk), u(tk)] +w(tk) (63)

y(tk) = h[x(tk)] + v(tk) (64)

f is the system function. h is the measurement or
process output function. x is the state variable (vec-
tor). u is the process input (vector) having known
value. It includes control signals and known process
disturbances. y is the process measurement (vector).
w is the random process noise, or disturbance (vec-
tor):

w(tk) ∼ [0,Q(tk)] (mean is 0; covariance is Q)
(65)

v is the random measurement noise (vector):

v(tk) ∼ [0,R(tk)] (mean is 0; covariance is R) (66)

f and h are vector functions (linear or nonlinear).

Typically, the above model, (63) — (64), stems from
discretizing the continuous-time model (subindex c
for continuous-time)

ẋ(t) = fc [x(t), u(t)] +wc(t) (67)

y(t) = h[x(t)] + vc(t) (68)

with a proper discretization method. (w and v are
now actually continuous-time noise signals.) We will
use the Explicit Euler method with time-step Ts [d].
This is a simple method which can be applied to
nonlinear systems. With Ts sufficiently small, the
behaviour of the discrete-time system will be very
equal to the original continuous-time system. Dis-
cretizing (67) with the Explicit Euler method, and
avoiding expressing the details about the discretiza-
tion of continuous-time random signals, the resulting
discrete-time model is

x(tk+1) = x(tk) + Tsfc [x(tk), u(tk)]� �� �
f [x(tk),u(tk)]

+w(tk) (69)

y(tk) = h[x(tk)] + v(tk) (70)

A.3 Simulation-estimator

The simplest state estimator is simply a simula-
tor running in parallel (synchroneously) with the
real system. This estimator will here be denoted
simulation-estimator. The simulated states are used
as state estimates, and they are not adjusted in any
way. (In a Kalman Filter the estimates are adjusted
continuously based on the difference between the real
and the predicted (simulated) measurement.) The
simulation-estimator can also be denoted an open-
loop estimator. Another term is ballistic1 estimator.
The simulation-estimator is actually the only option
if there are no reliable measurements available for
correcting the estimates.

The algorithm of the simulation-estimator state esti-
mator uses the model (69) — (70) directly, but since
the noise signals w and v are random with zero mean,
they are not included in the simulation algorithm.
Hence, the simulation-estimator is

xe(tk+1) = f [xe(tk), u(tk)] (71)

= xe(tk) + Tsfc [xe(tk), u(tk)] (72)

(assuming Explicit Euler)

ye(tk) = h[xe(tk)] (73)

Figure 13 shows a block diagram depicting this state
estimator.

A.4 Extended Kalman Filter

The Extended Kalman filter (EKF) is an extension
of the basic Kalman filter suitable for nonlinear sys-
tems. Assuming the model is (69) — (70), the EKF
algorithm is as follows (Simon, 2006).

• Initial step2 (k = 0):

— Aposteriori state estimate:

xapost(t0) = E (x0) (74)

1Since it moves in the state space without any correction,
just driven by its own dynamics.

2
E is expectation.
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— Covariance of estimation error:

Papost(t0) = E

	
[x(t0)− xapost(t0)] ·
[x(t0)− xapost(t0)]

T




(75)

For time steps k = 1, 2, 3,...:

1. Partial derivative of system function (Jacobian
matrix):

F (tk−1) =
∂f

∂x

����
xapost(tk−1),u(tk−1)

(76)

= I + Ts
∂fc
∂x

����
xapost(tk−1),u(tk−1)

(77)

2. Time-updates:

(a) Apriori estimate (predicted estimate):

xapri(tk) = f [xapost(tk−1), u(tk−1)] (78)

= xapost(tk−1) (79)

+Tsfc [xapost(tk−1), u(tk−1)]

(b) Covariance of estimation-error:

Papri(tk) = F (tk−1)Papost(tk−1)F (tk−1)
T+Q
(80)

3. Partial derivative of output function (Jacobian
matrix):

H(tk) =
∂h

∂x

����
xapri(tk),u(tk)

(81)

4. Measurement updates:

(a) Kalman filter gain:

K(tk) = Papri(tk)H(tk)
T · (82)

�
H(tk)Papri(tk)H(tk)

T +R
�−1

(b) Measurement estimate:

yapri(tk) = h[xapri(tk)] (83)

(c) Innovation variable3 :

e (tk) = y(tk)− yapri(tk) (84)

(d) State estimate (aposteriori estimate, or cor-
rected estimate), which is used as the ap-
plied estimate, xe:

xe(tk) = xapost (tk) = xapri (tk)+K(tk)e (tk)
(85)

(e) Covariance of estimation-error:

Papost(tk) = [I −K(tk)H(tk)]Papri(tk)
(86)

A.5 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is an exten-
sion of the basic Kalman Filter suitable for nonlinear
systems (Julier et al., 1997). The core principle be-
hind UKF is that the propagation of the mean and
the covariance of the state estimates is calculated us-
ing the nonlinear model directly. This is different
from the Extended Kalman Filter (EKF) where the
propagation of the covariance is calculated from the
linearized model. In UKF, the propagation of the
mean and covariance are calculated from so-called

3Also denoted the innovation process.
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sigma points which are a number of points in the
state space “around” the present state estimate. The
distance between the current state estimate and the
sigma points are calculated from present state esti-
mate covariance. The optimal estimate is calculated
as an average of the sigma points.

Comparing UKF with EKF:

• The propagation (prediction) of the mean and
covariance of the estimation error is more accu-
rate with UKF, and therefore the estimates can
also be more accurate because more accurate co-
variance information is used in the calculation of
the estimates.

• No linearization is needed in UKF. So, you do
not have to calculate the Jacobians of the sys-
tem function and the measurement function in
UKF, while this is necessary in EKF. This is a
great practical benefit when you are trying out
various models for the estimator, like when you
try various augmentations of the state vector.

• The computational burdens are not much differ-
ent.

Thus, the UKF has benefits related to both perfor-
mance and design.

There are a number of alternative UKF algorithms,
with different complexity and parameters to be se-
lected by the user (Simon, 2006). Assuming the
model is (69) — (70), the basic UKF algorithm can
be stated as follows. The algorithm is as given in (Si-
mon, 2006), but with somewhat different notation.

• Initial step4 (k = 0):

— Aposteriori state estimate:

xapost(t0) = E (x0) (87)

— Covariance of estimation error:

Papost(t0) = E

	
[x(t0)− xapost(t0)] ·
[x(t0)− xapost(t0)]

T




(88)
4
E is expectation.

For time steps k = 1, 2, 3,...:

1. Time-updates:

(a) Calculate 2n sigma points (n is the number
of states) based on the available aposteri
estimate:

x(i)σ (tk−1) = xapost(tk−1)+x
(i)T , i = 1, . . . , 2n

(89)

x(i) =

��
nPapost(tk−1)

i

�T
, i = 1, . . . , n

(90)

x(i+n) = −
��

nPapost(tk−1)
i

�T
, i = 1, . . . , n

(91)
where√means matrix square root, and sub
index i means i’th row.

(b) Propagate the sigma points using the
(discrete-time) system function f (below,
fc is the continuous-time system function):

x(i)σ (tk) (92)

= f


x(i)σ (tk−1), u(tk−1)

�
(93)

= x(i)σ (tk−1) (94)

+Tsfc



x(i)σ (tk−1), u(tk−1)

�
(95)

(Explicit Euler)

(c) Calculate the apriori state estimate as the
mean values of the propagated, transformed
sigma points:

xapri(tk) =
1

2n

2n�

i=1

x(i)σ (tk) (96)

(d) Calculate the apriori state covariance:

Papri(tk) (97)

=
1

2n

2n�

i=1



x(i)σ (tk)− xapri(tk)

�
(98)



x(i)σ (tk)− xapri(tk)

�T
(99)

+Q(tk) (100)
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2. Measurement updates:

(a) Calculate 2n sigma points (n is the num-
ber of states) based on the available apriori
estimate:

x(i)σ (tk−1) = xapost(tk−1)+x
(i)T , i = 1, . . . , 2n

(101)

x(i) =

��
nPapost(tk−1)

i

�T
, i = 1, . . . , n

(102)

x(i+n) = −
��

nPapost(tk−1)
i

�T
, i = 1, . . . , n

(103)
where√means matrix square root, and sub
index i means i’th row.

(b) Transform the state estimate sigma points
to corresponding measurement “sigma
points” using the measurement function h:

y(i)σ (tk) = h[x(i)σ (tk)] (104)

(c) Calculate the predicted measurement esti-
mate as the mean values of the transformed
measurement “sigma points”:

ypred(tk) =
1

2n

2n�

i=1

y(i)σ (tk) (105)

(d) Estimate the covariance of the predicted
measurement:

Py(tk) (106)

=
1

2n

2n�

i=1



y(i)σ (tk)− ypred(tk)

�
·(107)



y(i)σ (tk)− ypred(tk)

�T
(108)

+R(tk) (109)

(e) Estimate the cross covariance between apri-
ori state estimate and predicted measure-

ment:

Pxy (110)

=
1

2n

2n�

i=1



x(i)σ (tk)− xapri(tk)

�
·(111)



y(i)σ (tk)− ypred(tk)

�T
(112)

(f) Calculate the Kalman Filter gain:

K(tk) = PxyP
−1
y (113)

(g) Calculate the innovation variable5 :

e (tk) = y(tk)− ypred(tk) (114)

(h) Calculate the state estimate (aposteriori es-
timate, or corrected estimate), which is
used as the applied estimate, xe:

xe(tk) = xapost (tk) = xapri (tk)+K(tk)e (tk)
(115)

(i) Estimate the covariance of aposteriori state
estimate:

Papost(tk) = Papri(tk)−K(tk)PyKT
k (116)

The overall structure of the UKF can be represented
by the block diagram shown in Figure 14 (which is
the same block diagram as for the Extended Kalman
Filter).

A.6 Augmentation of the state vector

If you want to estimate a parameter or an unknown
component of a signal (variable) in addition to the ba-
sic state variables, you can augment the basic state
vector with the appropriate number of state variables,
and estimate these state variables together with the
basic state variables in the normal way. These aug-
mentation state variables are typically assumed to
vary randomly but with a constant mean. For UKF

5Also denoted the innovation process.
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Figure 14: The Kalman filter

(as for EKF) the augmentation state variables are
typically modelled as

ẋaug(t) = 0 +waug = waug (117)

Once this state augmentation has been made, UKF
is used as normally.
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