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1 Introduction

Here is a brief description of the main sections of this document:

• Section 2, Discrete-time signals, defines discrete-time signals as
sequences of .

• Section 3, Sampling phenomena, describes how sampling (in a
analog-to-digital or DA-converter) converts a continuous-time signal to a
discrete-time signal, resulting in a quantizing error which is a function of
the number of bits used in the DA-converter. A particular phenomenon
called aliasing is described. Aliasing occurs if the sampling frequency is
too small, causing frequency components in the analog signal to appear
as a low-frequent discrete-time signal.

• Section 4, Difference equations, defines the most basic discrete-time
system model type — the difference equation. It plays much the same role
for discrete-time systems as differential equations do for continuous-time
systems. The section shown how difference equations can be represented
using block diagrams.

• Section 5, The z-transform, shows how a discrete-time function is
transformed to a z-valued function. This transformation is analogous to
the Laplace-transform for continuous-time signals. The most important
use of the z-transform is for defining z-transfer functions.

• Section 6, z-transfer functions, defines the z-transfer function which is a
useful model type of discrete-time systems, being analogous to the
Laplace-transform for continuous-time systems.

• Section 7, Frequency response, shows how the frequency response can be
found from the z-transfer function.

• Section 8, Discretizing continuous-time transfer functions, explains how
you can get a difference equation or a z-transfer function from a
differential equation or a Laplace transfer function. Various
discretization methods are described.

• Section 9, State space models, defines discrete-time state space models,
which is just a set of difference equations written in a special way.
Discretization of continuous-time state space models into discrete-time
state space models is also described.

• Section 10, Dynamics of discrete-time models, analyzes the dynamics of
basis systems, namely gains, integrators, first order systems and
time-delays, with emphasis on the correspondence between pole and
step-response.

• Section 11, Stability analysis, defines various stability properties of
discrete-time systems: Asymptotic stability, marginal stability, and
instability, and relates these stability properties to the pole placement in
the complex plane. Finally, it is shown how stability analysis of feedback
systems (typically control systems) is performed using frequency
response based methods on the Nyquist stability criterion.
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2 Discrete-time signals

A discrete-time signal is a sequence or a series of signal values defined in
discrete points of time, see Figure 1. These discrete points of time can be

0 1 2 3 4 5 6

yk = y(kh)

0,0

0,5

1,0

1,5

2,0

k

h=0.2

0.0 0.2 0.4 0.6 0.8 1.21.0 tk = t [s]

Figure 1: Discrete-time signal

denoted tk where k is an integer time index. The distance in time between
each point of time is the time-step, which can be denoted h. Thus,

h = tk − tk−1 (1)

The time series can be written in various ways:

{x(tk)} = {x(kh)} = {x(k)} = x(0), x(1), x(2), . . . (2)

To make the notation simple, we can write the signal as x(tk) or x(k).

Examples of discrete-time signals are logged measurements, the input signal to
and the output signal from a signal filter, the control signal to a physical
process controlled by a computer, and the simulated response for a dynamic
system.

3 Sampling phenomena

3.1 Quantizing

The AD-converter (analog-digital) converts an analog signal ya(t), which can
be a voltage signal from a temperature or speed sensor, to a digital signal,
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yd(tk), in the form of a number to be used in operations in the computer, see
Figure 2. The AD-converter is a part of the interface between the computer

ya(t) yd(tk)

fs [Hz] = 1/Ts

AD-converter
with samplingContinuous-time,

analog signal
Discrete-time,
digital signal

tkt

Figure 2: Sampling

and the external equipment, e.g. sensors.

The digital signal is represented internally in the computer by a number of
bits. One bit is the smallest information storage in a computer. A bit has two
possible values which typically are denoted 0 (zero) and 1 (one). Assume that
ya(t) has values in the range [Ymin, Ymax] and that the AD-converter represents
ya in the given range using n bits. Then ya is converted to a digital signal in
the form of a set of bits:

yd ∼ bn−1bn−2...b1b0 (3)

where each bit bi has value 0 or 1. These bits are interpreted as weights or
coefficients in a number with base 2:

yd = bn−12n−1 + bn−22n−2 + ...+ b121 + b020 (4)

b0 is the LSB (least significant bit), while bn−1 is the MSB (most significant
bit).

Let us see how the special values Ymin and Ymax are represented in the
computer. Assume that n = 12, which is typical in AD-converters. yd = Ymin
is then represented by

yd = Y min (5)

= 0 · 211 + 0 · 210 + ...+ 0 · 21 + 0 · 20 (6)

= 0000000000002 = 02 (7)

= 0 (decimal) (8)
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where subindex 2 means number base 2. yd = Ymax is represented by

yd = Y max (9)

= 1 · 211 + 1 · 210 + ...+ 1 · 21 + 1 · 20 (10)

= 1111111111112 (11)

= 10000000000002 − 1 (12)

= 212 − 1 (13)

= 4095 (decimal) (14)

The resolution q, which is the interval represented by LSB, is

q =
Ymax − Ymin

Number of intervals
=
Ymax − Ymin
2n − 1 (15)

For a 12-bit AD-converter with Ymax = 10V and Ymin = 0V, the resolution is

q =
Ymax − Ymin
2n − 1 =

10V− 0V
212 − 1 =

10V
4095

= 2.44mV (16)

Variations smaller than the resolution may not be detected at all by the
AD-converter.

Figure shows an example of an analog signal and the corresponding quantized
signal for n = 12 bits and for n = 4 bits in the AD-converter. The low
resolution is clear with n = 4.

Figure 3: Analog signal and the corresponding quantized signal for n = 12 bits (up
to 15s) and for n = 4 bits (after 15 s) in the AD-converter.

3.2 Aliasing

A particular phenomenon may occur when a continuous-time signal is sampled.
Frequency components (i.e. sinusoidal signal components) in the analog signal
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may appear as a low-frequent sinusoid in the digital signal!1 This phenomenon
is called aliasing2 , and it appears if the sampling frequency is too small
compared to the frequency of the sampled signal. Figure 4 shows two examples,
one without aliasing and one with aliasing. The sampling interval is different
in the two examples. The continuous-time sinusoid in Figure 4 is given by

Figure 4: A continuous-time sinusoid y(t) = sin 2πt and the sampled sinusoids for
two different sampling intervals

y(t) = sin 2πt (17)

having signal frequency
fcon = 1Hz (18)

I have drawn straight lines between the discrete signal values to make these
values more visible. The two cases are as follows:

1. Sampling interval h = 0.2s corresponding to sampling frequency

fs =
1

h
=

1

0.2
= 5Hz (19)

The discrete signal has the same frequency as the continuous-time signal,
see Figure 4. Thus, there is is no aliasing.

2. Sampling interval h = 0.8s corresponding to sampling frequency

fs =
1

h
=

1

0.8
= 1.25Hz (20)

1The amplitude is however not changed.
2Alias = who uses a false name
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The discrete signal has a different (lower) frequency than the
continuous-time signal, see Figure 4. Thus, there is aliasing.

What are the conditions for aliasing to occur? These conditions will not be
derived here, but they are expressed in Figure 5.3 The figure indicates that

f sfs/2 =f N 3 fs/2 2 f s0

f N

fdis

f co n

S lo p e 1

N o  aliasin g
fo r fc o n  h ere

E x am p le
o f  fc o n

C o rresp o n -
d in g  f d is

Figure 5: The correspondence between continuous-time signal frequency fcon and
the sampled discrete-time signal frequency fdis

(only) continuous-time signal frequency components having frequency fcon
larger than half of the sampling frequency fs are aliased, and when they are
aliased, they appear as low-frequent sinusoids of frequency fdis. Half the
sampling frequency is defined as the Nyquist frequency:

fN
def
=
fs
2

(21)

Using fN , the condition for aliasing can be stated as follows: Continuous-time
signal frequency components having frequency fcon larger than the Nyquist
frequency fN are aliased, and the resulting frequency, fdis, of signals being
aliased is found from Figure 5.

Example 3.1 Aliasing

Let us return to the two cases shown in Figure 4:

1. h = 0.2s: The sampling frequency is fs = 1/h = 5Hz. The Nyquist
frequency is

fN =
fs
2
=
5

2
= 2.5Hz (22)

The continuous-time signal frequency is

fcon = 1Hz (23)

Since fcon < fN , there is no aliasing.
3The figure is inspired by [5].
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2. h = 0.8s: The sampling frequency is fs = 1/h = 1.25Hz. The Nyquist
frequency is

fN =
fs
2
=
1.25

2
= 0.63Hz (24)

The continuous-time signal frequency is

fcon = 1Hz (25)

Since fcon > fN , there is aliasing.

What is the frequency of the resulting signal, fdis? Figure 6 shows how
to find fdis. The result is

fs=1.25fN=0.6250

fN

fdis

fcon

Slope 1

fcon=1

fdis=0.25

Figure 6: Example 3.1

fdis = 0.25Hz (26)

which gives period

Tdis =
1

fdis
=

1

0.25Hz
= 4s (27)

The above results are in accordance with the observations in Figure 4.

[End of Example 3.1]

Aliased frequency components may cause problems in audio applications and
control applications. One way of reducing the aliasing problem is to pass the
continuous-time signal through a lowpass filter before sampling. This
anti-aliasing filter should be an analog filter which may be implemented using
electronic components as resistors, capacitors and operational amplifiers.

4 Difference equations

4.1 Difference equation models

The basic model type of continuous-time dynamic systems is the differential
equation. Analogously, the basis model type of discrete-time dynamic systems
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is the difference equation. Here is an example of a linear second order
difference equation with u as input variable and y as output variable:

y(k) = −a1y(k − 1)− a0y(k − 2) + b1u(k − 1) + b0u(k − 2) (28)

where ai and bj are coefficients of the difference equation, or model
parameters. We can say that this difference equation is normalized since the
coefficient of y(k) is 1 (the other coefficients then have unique values).

The difference equation (28) may be written in other equivalent forms. One
equivalent form is

y(k + 2) + a1y(k + 1) + a0y(k) = b1u(k + 1) + b0u(k) (29)

where there are no time delayed terms, only time advanced terms (or terms
without any advance or delay). This form can be achieved by increasing each
time index in (28) by 2.

Example 4.1 A lowpass filter as a difference equation

The following difference equation implements a discrete-time lowpass filter. a
is a filter parameter.

y(k) = ay(k − 1) + (1− a)u(k) (30)

[End of Example 4.1]

Example 4.2 A PI controller as a difference equation

The following difference equation implements a discrete-time PI
(proportional+integral) controller. Kp and Ti are controller parameters.

u(k) = u(k − 1) +Kp
µ
1 +

h

Ti

¶
e(k)−Kpe(k − 1) (31)

where u is the control signal generated by the controller, and e is the control
error (which is the difference between the setpoint and the process
measurement). Kp and Ti are controller parameters, and h is the sampling
interval.

[End of Example 4.1]

Example 4.3 A simulation algorithm as a difference equation

Given the following model of a first order system in the form of a differential
equation:

ẏ(t) = − 1
T
y(t) +

K

T
u(t) (32)

u is the input, y the output, K the gain and T the time constant. Applying
the Euler forward method for numerical solution of this differential equation
yields the following difference equation:

y(k) =

µ
1− h

T

¶
y(k − 1) + Kh

T
u(k − 1) (33)

where h is the simulation time-step.

[End of Example 4.3]
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4.2 Calculating responses

4.2.1 Calculating dynamic responses for difference equations

A difference equation is actually itself an algorithm or formula for calculating
responses in the form of time functions.

Example 4.4 Calculating the dynamic responses for a difference
equation

See Example 4.3. Assume the following parameter values:

h = 0.1; T = 1; K = 2 (34)

The difference equation becomes

y(k) =

µ
1− 0.1

1

¶
y(k − 1) + 2 · 0.1

1
u(k − 1) (35)

= 0.9y(k − 1) + 0.2u(k − 1) (36)

Assume that u is a step of amplitude U at discrete time k = 0, and that the
initial value of y is y0. From (36) we can calculate the first two response in y
as follows:

y(1) = 0.9y(0) + 0.2u(0) (37)

= 0.9y0 + 0.2U (38)

y(2) = 0.9y(1) + 0.2u(1) (39)

= 0.9 [0.9y0 + 0.2U ] + 0.2 · 0 (40)

= 0.81y0 + 0.18U (41)

[End of Example 4.3]

4.2.2 Calculating static responses for difference equation

By static response we mean the constant steady-state value of the output
variable of the model when the input variables have constant values. The
static response can be calculated from the static version of the difference
equation. The static version is found by neglecting all time-dependencies in
the differential equation. For example, a term as y(k − 1) is replaced by ys
where subindex s is for static.

Example 4.5 Calculating static response for a difference equation

Eq. (30) in Example 4.1 is a lowpass filtering algorithm. It is repeated here for
convenience:

y(k) = ay(k − 1) + (1− a)u(k) (42)
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Let us calculate the static response in the filter output y. The input u is
assumed to be a constant of amplitude U . The static version of the difference
equation (42) is

ys = ays + (1− a)us (43)

= ays + (1− a)U (44)

Solving for ys yields

ys =
(1− a)U
1− a = U (45)

(So, the output is equal to the input, statically. This is to be expected for a
lowpass filter.)

[End of Example 4.5]

4.3 Block diagram of difference equation models

A block diagram gives a graphical representation of a mathematical model.
The block diagram shows the structure of the model, e.g. how subsystems are
connected. Furthermore, block diagram models can be represented directly in
graphical simulation tools such as SIMULINK and LabVIEW.

Figure 7 shows the most frequently used blocks — or the elementary blocks —
used in block diagrams of difference equation models.

K
u(k)

Gain:

y(k)=u1(k)+u2(k)-u3(k)Sum
(incl. subtraction):

z-1y(k) y(k-1)=z-1y(k)Time delay
of one time step :

u1(k)

y(k)=Ku(k)

u3(k)

u2(k)

Figure 7: Elementary blocks for drawing block diagrams of difference equation
models

A comment about the time delay block: The output y(k) is equal to the time
delayed input, y(k − 1):

y(k − 1) = z−1y(k) (46)
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The operator z−1 is here a time-step delay operator, and it can be regarded as
an operator of the time-step delay, cf. Section A. (z−1 is also the transfer
function of a time-step delay, cf. Section 6.7.)

Example 4.6 Block diagram of a difference equation

Eq. (30) in Example 4.1 is a lowpass filtering algorithm. It is repeated here:

y(k) = ay(k − 1) + (1− a)u(k) (47)

Using the elementary blocks shown in Figure 7 a block diagram of this
difference equation can be drawn as shown in Figure 8.

(1-a)

Gain

y(k)
=ay(k-1)+(1-a)u(k)

a

Sum

Gain Time delay

z-1

u(k)

y(k-1)

Figure 8: The block diagram corresponding to (47)

[End of Example 4.6]

5 The z-transform

5.1 Definition of the z-transform

The z-transform of discrete-time signals plays much the same role as the
Laplace transform for continuous-time systems.

The z-transform of the discrete-time signal {y(k)}, or just y(k), is defined as
follows:

Z {y(k)} =
∞X
k=0

y(k)z−k (48)

For simplicity, I will use the symbol y(z) for Z {y(k)} when it can not be
misunderstood. Strictly, a different variable name must be used, for example
Y (z).

Example 5.1 z-transform of a constant

Assume that the signal y(k) has constant value A. This signal can be regarded
a step of amplitude A at time-step 0. z-transforming y(k) gives

y(z) =
∞X
k=0

y(k)z−k =
∞X
k=0

Az−k =
A

1− z−1 =
Az

z − 1 (49)
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[End of example 5.1]

5.2 Properties of the z-transform

Below are the most important properties of the z-transform. These properties
can be used when calculating the z-transform of composite signals. A more
complete list of z-transform properties are shown in Appendix A.1.

• Linearity:
k1y1(z) + k2y2(z)⇐⇒ k1y1(k) + k2y2(k) (50)

• Time delay: Multiplication by z−n means time delay of n time-steps:

z−ny(z)⇐⇒ y(k − n) (51)

• Time advancing: Multiplication by zn means time advancing by n
time-steps:

zny(z)⇐⇒ y(k + n) (52)

Example 5.2 z-transformation of a composite signal

Given the following discrete-time function:

y(k) = Bak−n (53)

(which is a time delayed time exponential). The inverse z-transform of y(k)
can be calculated using (353) together with (50) and (51). The result becomes

y(z) = Bz−n
z

z − a = B
z1−n

z − a (54)

[End of example 5.2]

5.3 Inverse transform

Inverse z-transformation of a given z evaluated function, say Y (z), is
calculating the corresponding time function, say y(k). The inverse transform
may be calculated using a complex integral4, but this method is not very
practical. Another method is to find a proper combination of the
z-transformation pairs listed in Appendix A.2, possibly in combination with
some of the z-transform properties in Appendix A.1.

In most cases where you need to calculate a time signal y(k), its z-transform
Y (z) stems from a transfer function excited by some discrete-time input
signal. You may then calculate y(k) by first transferring the transfer function
to a corresponding difference equation, and then calculating y(k) iteratively
from this difference equation as explained in 4.2.

4y(k) = 1
2πj

H
Y (z)zk dz

z
, where the integration path must be in the area of convergence

of Y (z).[1]
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6 z-transfer functions

6.1 Introduction

Models in the form of difference equations can be z-transformed to z-transfer
functions, which plays the same role in discrete-time systems theory as s
transfer functions do in continuous-time systems theory. More specific:

• The combined model of systems in a serial connection can be found my
simply multiplying the individual z-transfer functions.

• The frequency response can be calculated from the transfer function.

• The transfer function can be used to represent the system in a simulator
or in computer tools for analysis and design (as SIMULINK, MATLAB
or LabVIEW)

6.2 How to calculate z-transfer functions

As an example we will calculate the z-transfer function from input u to output
y for the difference equation (28), which is repeated here:

y(k) = −a1y(k − 1)− a0y(k − 2) + b1u(k − 1) + b0u(k − 2) (55)

First we take the z-transform of both sides of the difference equation:

Z {y(k)} = Z {−a1y(k − 1)− a0y(k − 2) + b1u(k − 1) + b0u(k − 2)} (56)

Using the linearity property (50) and the time delay property (51) (56) can be
written as

Z {y(k)} = −Z {a1y(k − 1)}−Z {a0y(k − 2)}+Z {b1u(k − 1)}+Z {b0u(k − 2)}
(57)

and
y(z) = −a1z−1y(z)− a0z−2y(z) + b1z−1u(z) + b0z−2u(z) (58)

which can be written as

y(z) + a1z
−1y(z) + a0z−2y(z) = b1z−1u(z) + b0z−2u(z) (59)

or £
1 + a1z

−1 + a0z−2
¤
y(z) =

£
b1z
−1 + b0z−2

¤
u(z) (60)

y(z) =
b1z
−1 + b0z−2

1 + a1z−1 + a0z−2| {z }
H(z)

u(z) (61)

b1z + b0
z2 + a1z1 + a0| {z }

H(z)

u(z) (62)
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where H(z) is the z-transfer function from u to y:

H(z) =
y(z)

u(z)
=

b1z
−1 + b0z−2

1 + a1z−1 + a0z−2
=

b1z + b0
z2 + a1z1 + a0

(63)

Hence, z-transfer functions can be written both with positive and negative
exponents of z.5

Example 6.1 Calculating the transfer function

Eq. (30) in Example 4.1 is a lowpass filtering algorithm. It is repeated here:

y(k) = ay(k − 1) + (1− a)u(k) (64)

Let us calculate the transfer function from u to y. Taking the z-transform of
(64) gives

y(z) = az−1y(z) + (1− a)u(z) (65)

which can be written as

y(z) =
1− a

1− az−1| {z }
H(z)

u(z) (66)

=
(1− a) z
z − a| {z }
H(z)

u(z) (67)

where H(z) is the transfer function (written in two ways).

[End of Example 6.1]

The following example shows that the transfer function is the same as the
z-transformed impulse response.

Example 6.2 Transfer function is the z-transformed impulse
response

Given a system with transfer function H(z). Assume that the input u is an
impulse, which is a signal having value 1 at time index k = 0 and value zero
for other points of time. According to (351) u(z) = 1. Then the z-transformed
impulse response is

y(z) = H(z)u(z) = H(z) · 1 = H(z) (68)

(as stated).

[End of example 6.2]
5Within the area of signal processing transfer functions with negative exponents of z are

common, while in control theory transfer functions with positive exponents are more common.
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6.3 From z-transfer function to difference equation

In the above Section we derived a z-transfer function from a difference
equation. We may go the opposite way, too, to derive a difference equation
from a given z-transfer function. Some applications of this are

• Deriving a filtering algorithm from a filtering transfer function

• Deriving a control function from a given controller transfer function

• Deriving a simulation algorithm from the transfer function of the system
to be simulated

The procedure will be illustrated via a concrete example. Assume given the
following transfer function:

H(z) =
b1z + b0

z2 + a1z + a0
=
y(z)

u(z)
(69)

We start by cross multiplying (69):¡
z2 + a1z + a0

¢
y(z) = (b1z + b0)u(z) (70)

which can be written as

z2y(z) + a1zy(z) + a0y(z) = b1zu(z) + b0u(z) (71)

Taking the inverse transform of the above expression gives

z2y(z)| {z }
y(k+2)

+ a1zy(z)| {z }
a1y(k+1)

+ a0y(z)| {z }
a0y(k)

= b1zu(z)| {z }
b1u(k+1)

+ b0u(z)| {z }
b0u(k)

(72)

Reducing each of the time indexes by 2 yields

y(k) + a1y(k − 1) + a0y(k − 2) = b1u(k − 1) + b0u(k − 2) (73)

Usually it is practical to have the output variable alone on the left side:

y(k) = −a1y(k − 1)− a0y(k − 2) + b1u(k − 1) + b0u(k − 2) (74)

This difference equation can be used as a simulation algorithm, cf. Section 4.2.

6.4 Poles and zeros

Poles and zeros of z-transfer functions are defined in the same way as for s
transfer functions: The zeros of the transfer function are the z-roots of
numerator polynomial, and the poles are the z-roots of the denominator
polynomial. The poles determine the stability property of the system, as
explained in Section 11.2.

Example 6.3 Poles and zeros

Given the following z-transfer function:

H(z) =
(z − b)

(z − a1) (z − a2) (75)

The poles are a1 and a2, and the zero is b.

[End of Example 6.3]
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6.5 Calculating time responses in z-transfer function
models

Assume given a transfer function, say H(z), with input variable u and output
variable y. Then,

y(z) = H(z)u(z) (76)

If u(z) is given, the corresponding time response in y can be calculated in
several ways:

1. By finding a proper transformation pair in Appendix A.2, possibly
combined with some of the z-transform properties in Appendix A.1.

2. By deriving a differential equation corresponding to the transfer function
and then calculating y(k) iteratively according to the difference equation.
The procedure of deriving a differential equation corresponding to a
given transfer function is explained in Section 6.3, and the calculation of
time responses for s difference equation is described in Section 4.2.

6.6 Static transfer function and static response

The static version Hs of a given transfer function H(z) will now be derived.
Using the static transfer function the static response can easily be calculated.
Assume that the input variable u is a step of amplitude U . The stationary
response can be found using the final value theorem:

lim
k→∞

y(k) = ys = lim
z→1

(z − 1)y(z) (77)

= lim
z→1

(z − 1)H(z)u(z) (78)

= lim
z→1

(z − 1)H(z) zU
z − 1 (79)

= H(1)U (80)

Thus, we have the following static transfer function:

Hs = lim
z→1

H(z) = H(1) (81)

Using the static transfer function the static response can be calculated by

ys = HsU (82)

Example 6.4 Static transfer function and static response

Eq. (66) defines the transfer function of a given lowpass filter. The transfer
function is repeated here:

H(z) =
y(z)

u(z)
=

1− a
1− az−1 (83)
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The corresponding static transfer function is

Hs = lim
z→1

H(z) = lim
z→1

1− a
1− az−1 =

1− a
1− a · 1 = 1 (84)

Assume that the input is U (constant). The corresponding static response in y
is

ys = H(1) · U = U (85)

(which is the same as calculated using the static version of the filter difference
equation (42) in Example 4.5).

[End of Example 6.4]

6.7 Block diagrams

6.7.1 Basic blocks

Block diagrams of z-transfer function models can be drawn using the same
elementary blocks as for difference equation models, see Figure 7, except that
the signals are z-transformed. In addition to these elementary blocks, a block
containing any transfer function can be used, see Figure 9.

H(z)
u(z) y(z)

Figure 9: A block containing the transfer function H(z)

6.7.2 Block diagram manipulation

The most common rules for block diagram manipulation are shown (and
proven) in Figure 10. The rules are the same as for Laplace transfer functions.

Example 6.5 Block diagram manipulation

Figure 11 shows a block diagram of a feedback control system for a physical
process. The blocks contains z-transfer functions (however unspecified in this
example). The process can be for example a liquid tank where the level is to
be controlled, or a motor where the speed is to be controlled.

The transfer function HySP ,y(s) from setpoint ySP to process output variable
y in the block diagram shown in Figure 11 can be found by simplifying the
block diagram until it consists of one block, and the transfer function is then
the contents of this single block. Figure 12 shows the individual steps of the
block diagram manipulation. The transfer function becomes

HySP ,y(z) =
y(z)

ySP (z)
=

Hsm(z)Hc(z)Hu(z)

1 +Hs(z)Hc(z)Hu(z)
(86)

[End of Example 6.5]
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H1(z) H2(z) H2(z)H1(z)
u(z) u(z)y(z) y(z)

H1(z)

H1(z)+H2(z)
u(z) y(z)

Series 
connection

H2(z)

u(z) y(z)
Parallel connection

u1(z)

u2(z)

u3(z)

u1(z)
u2(z)

u3(z)

y(z) y(z)

Splitting
sum junction

H1(z)
u1(z)

H2(z)
u2(z)

y(z) Moving
sum junction H1(z)

u2(z)

u1(z)

H2(z)
H1(z)

y(z)

H(z)
u(z)

y(z) Moving
branch

H(z)
u(z)

y(z)
H(z)

1

H1(z)
y(z)

u2(z)

u1(z)
Illegal!

H(z)

u2(z)

u1(z)

H2(z)

Negative
feedbacku(z)

H1(z)

y(z) y(z)

H1(z)
1+H1(z)H2(z)

y(z)u(z)

Moving branch 
across sum junction

Figure 10: Rules for block diagram manipulation

6.7.3 Calculating the transfer function from the block diagram
without block diagram manipulation

You do not have to manipulate the block diagram to calculate the transfer
function from it. You can just write down the proper relations or equations
from the block diagram, and then calculate the transfer function from these
equations directly.

Example 6.6 Calculating the transfer function without block
diagram manipulation

See Example 6.5. From the block diagram in Figure 11 we can write down the
following equation for y(z):

y(z) = Hu(z)Hc(z) [Hsm(z)ySP (z)−Hs(z)y(z)]
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em(z)
Hc(z) Hu(z)

u(z) y(z)ymSP(z)ySP(z)

Hd(z)

d(s)Process

Model of
sensor with 

scaling

Controller

Disturbance
transfer function

Actuator
transfer function

Hs(z)

Sensor
(measurement)

with scaling

Hsm(z)

ym(z)

Setpoint Control
error

Measurement

Process
output

variable

Process
disturbance

Control
variable

Setpoint
in measurement

unit

Figure 11: Block diagram of a feedback control system for a physical process. The
subsystems are represented by transfer function blocks.

Solving this expression for y(z) yields

y(z) =
Hsm(z)Hc(z)Hu(z)

1 +Hs(z)Hc(z)Hu(z)| {z }
=HySP ,y(z)

ySP (z) (87)

which gives the same transfer function HySP ,y(s) as found by block diagram
manipulation in Example 6.5.

[End of Example 6.6]

7 Frequency response

7.1 Calculating frequency response from transfer
function

As for continuous-time systems, the frequency response of a discrete-time
system can be calculated from the transfer function: Given a system with
z-transfer function H(z). Assume that input signal exciting the system is the
sinusoid

u(tk) = U sin(ωtk) = U sin(ωkh) (88)
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Hc(z) Hu(z)

Hs(z)

y(z)
Hsm(z)

Hc(z)Hu(z)

Hs(z)

y(z)
Hsm(z)

y(z)
Hsm(z)

Hc(z)Hu(z)

1+Hc(z)Hu(z)Hs(z)

y(z)Hsm(z)Hc(z)Hu(z)

1+Hc(z)Hu(z)Hs(z)

Combined using
the series rule

Combined using
the feedback rule

Combined using
the series rule

ySP(z)

ySP(z)

First, input d(z) is set to zero .

Hc(z) Hu(z)

Hs(z)

y(z)
Hsm(z)

ySP(z)

Hd(z)

d(z)

ySP(z)

ySP(z)

Figure 12: Manipulating a block diagram to find the transfer function from ySP to
y

where ω is the signal frequency in rad/s. It can be shown that the stationary
response on the output of the system is

y(tk) = Y sin(ωkh+ φ) (89)

= UA sin(ωkh+ φ) (90)

= U

Az }| {¯̄
H(ejωh)

¯̄| {z }
Y

sin

ωtk + argH(ejωh)| {z }
φ

 (91)

where H(ejωh) is the frequency response which is calculated with the following
substitution:

H(ejωh) = H(z)|z=ejωh (92)

where h is the time-step. The amplitude gain function is

A(ω) = |H(ejωh)| (93)

The phase lag function is

φ(ω) = argH(ejωh) (94)
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A(ω) and φ(ω) can be plotted in a Bode diagram.

Figure 13 shows as an example the Bode plot of the frequency response of the
following transfer function (time-step is 0.1s):

H(z) =
b

z − a =
0, 0952

z − 0, 9048 (95)

Note that the plots in Figure 13 are drawn only up to the Nyquist frequency
which in this case is

Figure 13: Bode plot of the transfer function (95). ωN = 31.4 rad/s is the Nyquist
frequency (sampling time h is 0.1s).

ωN =
ωs
2
=
2π/h

2
=

π

h
=

π

0.1
= 10π ≈ 31.4rad/s (96)

The plots are not drawn (but they exist!) above the Nyquist frequency because
of symmetry of the frequency response, as explained in the following section.

Example 7.1 Calculating the frequency response manually from the
z-transfer function

Given the z-transfer function

H(z) =
b

z − a (97)
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The frequency response becomes

H(ejωh) =
b

ejωh − a (98)

=
b

cosωh+ j sinωh− a (99)

=
b

(cosωh− a)| {z }
Re

+ jsinωh| {z }
Im

(100)

=
bq

(cosωh− a)2 + (sinωh)2ej arctan[(sinωh)/(cosωh−a)]
(101)

=
bq

(cosωh− a)2 + (sinωh)2
ej[− arctan(

sinωh
cosωh−a )] (102)

The amplitude gain function is

A(ω) = |H(ejωh)| = bq
(cosωh− a)2 + (sinωh)2

(103)

and the phase lag function is

φ(ω) = argH(ejωh) = − arctan
µ

sinωh

cosωh− a
¶
[rad] (104)

[End of Example 7.1]

Even for the simple example above, the calculations are cumbersome, and
prone to errors. Therefore you should use some computer tool for calculating
the frequency response, as MATLAB’s Control System Toolbox or LabVIEW’s
Control Design Toolkit.

7.2 Symmetry of frequency response

It can be shown that the frequency response is symmetric as follows: |H(ejωh)|
and argH(ejωh) are unique functions in the frequency interval [0,ωN ] where
ωN is the Nyquist frequency.6 In the following intervals [mωs, (m+1)ωs] (m is
an integer) the functions are mirrored as indicated in Figure 14 which has a
logarithmic frequency axis. (The Bode plots in this section are for the transfer
function (95).) The symmetry appears clearer in the Bode plots in Figure 15
where the frequency axis is linear.

Due to the symmetry of the frequency response, it is strictly not necessary to
draw more of frequency response plots than of the frequency interval [0,ωN ].

6The symmetry is related to aliasing, cf. Section 3.2.



Finn Haugen, TechTeach: Discrete-time signals and systems 27

Figure 14: Bode plots of frequency response of (63). The frequency axis is loga-
rithmic.

Figure 15: Bode plots of frequency response of (63). The frequency axis is linear
to make the symmetries if the frequency responses clearer.

8 Discretizing continuous-time transfer
functions

8.1 Introduction

In some cases you need to find a discrete-time z-transfer function from a given
continuous-time s transfer function:

• In accurate model based design of a discrete controller for a process
originally in the form of a continuous-time s transfer function, Hp(s).
The latter should be discretized to get a discrete-time process model
before the design is started.

• Implementation of continuous-time control and filtering functions in a
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computer program.

There are several methods for discretization of an s transfer function. The
methods can be categorized as follows, and they are described in the following
sections:

1. Discretization based on having a zero order hold element on the input of
the system. This method should be used in controller design of a process
which has a sample and hold element on its input, as when a physical
process is controlled by a computer via a DA converter (digital to
analog). Zero order hold means that the input signal is held constant
during the time-step or sampling interval. Figure 16 shows a block
diagram of a continuous-time process with transfer function model G(s)
having a zero order hold element on its input.

Cont.-
time

process

y(t)uh(t)DA-converter
with holding

tk

u(tk) uh(t)

t t

y(t)

Sampling

tk

y(tk)=y(k)u(tk)=u(k)

y(tk)

Figure 16: Block diagram of a process having a zero order hold element on its
input. uh is the piecewise constant (held) input signal.

The discretization can be realized in several ways:

(a) By calculating the z-transfer function for G(s) with a zero order
hold element on its input.

(b) By first deriving a canonical continuous-time state space model
corresponding to G(s), and then discretizing this state space model
assuming a hold element on its input.

2. Using an integral numerical approximation7, typically Euler’s forward
method, Euler’s backward method or Tustin’s method. These methods
should be used when a continuous-time controller transfer function or
filter transfer function are discretized to get an algorithm ready for
programming. In such cases the input signal is a discrete-time signal
with no holding. The discretization is based on some numerical method
so that the behaviour of the discrete-time transfer function is similar to
that of the continuous-time transfer function.

7Alternatively, differential approximations may be used as the basis for the derivation of
the discretization procedures.
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8.2 Discretization with zero order hold element on the
input

8.2.1 Discretization involving the inverse Laplace transform

Below are two alternative (but equivalent) discretization formulas:

H(z) = Z
·
L−1

½
G(s)

s

¡
1− e−hs¢¾¯̄̄̄

t=kh

¸
(105)

and

H(z) =
¡
1− z−1¢Z ·L−1½G(s)

s

¾¯̄̄̄
t=kh

¸
(106)

where h is the sampling interval (or time-step). These formulas may be
derived by first assuming a discrete-time impulse in u(k) and calculating the
impulse response in y(k), and then calculating the transfer function as the z
transform of this transfer function, cf. Example 6.2.

Example 8.1 Discretizing a first order system

We will discretize the following continuous-time transfer function having a zero
order hold element at its input:

G(s) =
K

Ts+ 1
=

K
T

s+ 1
T

(107)

(106) becomes

H(z) =
¡
1− z−1¢Z "L−1( K

T

(s+ 1
T )s

)¯̄̄̄
¯
t=kh

#
(108)

Here

L−1
(

K
T

(s+ 1
T )s

)¯̄̄̄
¯
t=kh

= K
³
1− e−t/T

´¯̄̄
t=kh

= K
³
1− e−kh/T

´
(109)

From (354) with a = e−h/T and (343) we get

H(z) =
K
¡
1− e−h/T ¢
z − e−h/T (110)

[End of Example 8.1]

8.2.2 Discretizing using canonical state space model

The discretization method described in this section involves state space models
and discretization of such models. These topics are described in a later section
(9) of this document, but references to these sections are given in the present
section.
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In Section 8.2.1 the discretization method involves the Laplace transform, and
it may be difficult to find the transfer function if the original continuous-time
transfer function is complicated or has a special form. I will now present a
method that may work fine even for complicated transfer functions. It is based
on discretization a canonical state space model corresponding to the given
continuous-time transfer function. The method is as follows:

1. Given a continuous-time transfer function from input u to output y on
the following general form:

y(s)

u(s)
= H(s) =

bns
n + bn−1sn−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0 (111)

Note that the coefficient an of the term sn in the denominator is equal to
1.

2. Derive a continuous-time canonical state space model corresponding to
H(s). A canonical model is one with a defined structure among the
infinitely number of state space models having equal transfer function.
Here we choose a suitable model form called the controllable canonical
form:

ẋ1 = x2 (112)

ẋ2 = x3 (113)
...

ẋn = −a0x1 − a1x2 − · · ·− an−1xn + u
y = (b0 − bna0)x1 + (b1 − bna1)x2 + · · ·

+(bn−1 − bnan−1)xn + bnu (114)

3. Discretize the continuous-time canonical state space model above
assuming zero order hold on the system’s input. The discretization
procedure is described in Section 9.2.2. The result is a discrete-time
state space model on the form

x(k + 1) = Adx(k) +Bdu(k) (115)

y(k) = Cdx(k) +Ddu(k) (116)

4. Calculate the discrete-time transfer function from the state space model
using e.g. the formula (228) which is repeated here:

H(z) =
y(z)

u(z)
= Cd(zI −Ad)−1Bd +Dd (117)

Example 8.2 Discretizing a first order transfer function

1. Given the following continuous-time transfer function:

H(s) =
y(s)

u(s)
=

K

Ts+ 1
=

K
T

s+ 1
T

=
b0

s+ a0
(118)
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2. The continuous-time canonical state space model is found from (112) —
(114):

ẋ = − 1
T1
x+ u = Ax+Bu (119)

y =
K

T
x = Cx+Du (120)

3. The discrete-time state space model is (assuming time-step h)

x(k + 1) = Adx(k) +Bdu(k) (121)

y(k) = Cdx(k) +Ddu(k) (122)

where

Ad =
£L−1 {(sI −A)}¤

t=h
(123)

=

·
L−1

½µ
s+

1

T

¶¾¸
t=h

(124)

= e−h/T (125)

Bd =

·
L−1

½
(sI −A)−1 1

s
B

¾¸
t=h

(126)

= h
³
1− e−h/T

´
(127)

4. The discrete-time transfer function can be calculated from (228):

H(z) =
y(z)

u(z)
= D(zI −Ad)−1Bd (128)

=
K

h

³
z − e−h/T

´−1 h
h
³
1− e−h/T

´i
(129)

=
K
¡
1− e−h/T ¢
z − e−h/T (130)

which is the same as the result in Example (8.1).

[End of Example 8.2]

8.3 Discretizing using Euler’s and Tustin’s numerical
approximations

8.3.1 The substitution formulas

We will now derive substitution formulas for substituting s in continuous-time
transfer functions by a functions of z to get a discrete-time z-transfer function.
The derivation will be based on numerical approximations to time integrals.
Let us start with the following general differential equation:

ẋ = f(x, u) (131)

where u is input variable and x is output variable. To simplify the notation we
let f(k) represent f [x(tk), u(tk)] = f [x(k), u(k)]. In general f() is a nonlinear,
vectorized8 function. By integrating the differential equation (131), we get the

8which means that the variables are vectors, e.g. x = [x1, x2]T
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following solution:

x(tk) = x(tk−1) +
Z tk

tk−1
f dτ (132)

or

x(k) = x(k − 1) +
Z kh

(k−1)h
f dτ (133)

The integral in (133) can be approximated in several ways:

• Euler’s forward method:

x(k) ≈ x(k − 1) + hf(k − 1) (134)

• Euler’s backward method:

x(k) ≈ x(k − 1) + hf(k) (135)

• Tustin’s method:

x(k) ≈ x(k − 1) + h
2
[f(k) + f(k − 1)] (136)

The above integral approximations are illustrated in Figure 17.

f

t

h

tk-1 tk

Forward rectangle (grey)
in Euler’s forward method

Exact integral is
area under curve

Trapesoid area (line)
in Tustin’s method

fk

fk-1

Backward rectangle
(large rectangle )
in Euler’s backward method

Figure 17: Numerical approximations to the integral in (133)
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We will now study the simple model

ẋ = u ≡ f (137)

(which is an integrator with u as input and x as output), and apply the above
various integral approximations to the solution of this differential equation. By
relating the z-transfer function from u to x and the s transfer function from u
to x, which is

x(s)

u(s)
=
1

s
(138)

we will (soon) get the substitution formulas we are after. Setting f = u in
(134) — (136) yields the following differential equations. The z-transfer
functions from u to x is derived and shown for each case.

• Euler’s forward method:

x(k) = x(k − 1) + hu(k − 1)⇒ x(z)

u(z)
=

h

z − 1 (139)

• Euler’s backward method:

x(k) = x(k − 1) + hu(k)⇒ x(z)

u(z)
=

hz

z − 1 (140)

• Tustin’s method:

x(k) = x(k − 1) + h
2
[u(k) + u(k − 1)]⇒ x(z)

u(z)
=
h

2

z + 1

z − 1 (141)

By relating each of the z-transfer functions (139) — (141) with the s transfer
function (138), we get the following substitution formulas:

Euler forward: s←− z − 1
h

or z ←− 1 + hs (142)

Euler backward: s←− z − 1
hz

or z ←− 1

1− hs (143)

Tustin: s←− 2

h

z − 1
z + 1

or z ←− 1 +
h
2 s

1− h
s s

(144)

Example 8.3 Discretizing a first order system with Tustin’s method

Given the following transfer function

y(s)

u(s)
= Hcont(s) =

1
s
ωb
+ 1

(145)

which is the transfer function of a continuous-time first order lowpass filter
with bandwidth ωb [rad/s]. The filter will now be discretized using Tustin’s
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method. Using the substitution (144) in (145) gives the following z-transfer
function:

y(z)

u(z)
= Hdisc(z) =

1
2(z−1)
hωb(z+1)

+ 1
=

hωb(z + 1)

(hωb + 2)z + (hωb − 2) (146)

Let us also derive the filtering algorithm: From (146),

(hωb + 2)zy(z) + (hωb − 2)y(z) = hωbzu(z) + hωbu(z) (147)

Taking the inverse z-transform yields

(hωb + 2)y(k + 1) + (hωb − 2)y(k) = hωbu(k + 1) + hωbu(k) (148)

Reducing the time indices by one and then solving for the output y yields the
following filtering algorithm:

y(k) =
2− hωb
2 + hωb

y(k − 1) + hωb
2 + hωb

u(k) +
hωb

2 + hωb
u(k − 1) (149)

[End of Example 8.3]

A few comments about the Tustins’s method:

• In signal processing literature the Tustin’s method is frequently denoted
the bilinear transformation method. The term bilinear is related to the
fact that the imaginary axis in the complex s-plane for continuous-time
systems is mapped or transformed onto the unity circle for the
corresponding discrete-time system. In addition, the poles are
transformed so that the stability property is preserved (this is not
guaranteed in the Euler’s methods).

• In general the frequency responses of Hcont(s) and of Hdisc(z) are not
equal at the same frequencies. Tustins method can be modified or
enhanced so that you can obtain equal frequency response of both
Hcont(s) and Hdisc(z) at one or more user-defined critical frequencies.
This is done by modifying — prewarping — the critical frequencies of
Hcont(s) so that the frequency responses are equal after discretization by
Tustin’s method. However, it my experience that prewarping is seldom
necessary, so I will not describe the prewarping procedure in further
detail here [1].

8.3.2 Which discretization method should you choose?

Euler’s forward method, Euler’s backward method or Tustin’s method? In
general, Tustin’s method is the most accurate of these three methods, so I
suggest it is the default choice. However, typically it is not much difference
between the Tustins’ method and the Euler’s backward method.

The Euler’s forward method is the least accurate method. But this method
may be a good choice for discretizing a nonlinear differential equation model
since it gives an explicit formula for the output variable. Tustin’s method and
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Euler’s backward methods are implicit methods since the output variable,
y(k), appears on both the left and the right side of the discretized expression,
and it is in general necessary to solve the discretized expression for y(k) at
each time-step, and this may be impractical. See Section 9.2.4 for an example
of discretizing a nonlinear model.

It turns out that Euler’s backward method is quite commonly used for
discretizing continuous-time control functions (i.e. the PID control function)
in commercial control equipment, so this method can therefore be our choice
in control applications.

8.3.3 Guidelines for choosing the time-step h

In general it is important that the time-step h of the discrete-time function is
relatively small, so that the discrete-time function behaves approximately
similar to the original continuous-time system. For the Euler’s forward method
a (too) large time-step may even result in an unstable discrete-time system!

The guidelines (rule of thumbs) below expresses either rules for the time-step
h or for the sampling frequency fs .They are related by

h =
1

fs
(150)

The guidelines depend somewhat on the application:

• Filters:
fs ≡ 1

h
≥ 5fH [Hz] (151)

Here, fs is the sampling frequency and fH is the highest frequency where
you want the discrete-time filter to have almost the same characteristics
as the original continuous-time filter. For example, for a lowpass filter
fH may be 5 times the bandwidth so that the filter characteristics up to
25 times the bandwidth will be similar to that of the original
continuous-time filter.

Above, the frequency unit is Hz. However, the relation (151) is the same
if the frequency unit is rad/s:

ωs ≡ 2π
h
≥ 5ωH [rad/s] (152)

• Controllers: [4] The DA converter (digital to analog) which is always
between the discrete-time control function and the continuous-time
process to be controlled, implements holding of the calculated control
signal during the time-step (sampling interval). This holding implies
that the control signal is time delayed approximately h/2, see Figure 18.
The delay influences the stability of the control loop. Suppose we have
tuned a continuous-time PID controller, and apply these PID parameters
on a discrete-time PID controller. Then the control loop will get reduced
stability because of the approximate delay of h/s. As a rule of thumb
(this can be confirmed from a frequency response based analysis), the
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t

h/2

u

The original signal time-delayed h /2
= average stair-formed signal

Original discrete-time signal

The signal 
held fixed

Figure 18: The DA-converter holds the calculated control signal throyghout the
sampling interval, thereby introducing an approximate time-delay of h/2.

stability reduction is small and tolerable if the time delay is less than
one tenth of the response-time of the control system as it would have
been with a continuous-time controller or a controller having very small
sampling time:

h

2
≤ Tr
10

(153)

which gives

h ≤ Tr
5

(154)

The response time is here the 63% rise time which can be read off from
the setpoint step response. For a system the having dominating time
constant T , the response-time is approximately equal to this time
constant. If the bandwidth of the control system is ωb [rad/s] (assuming
that the PID parameters have been found using a continuous-time PID
controller), the response-time of the control system can be estimated by

Tr ≈ 1

ωb
(155)

• Simulators:
h ≤ 0.1

|λ|max (156)

Here |λ|max is the largest of the absolute values of the eigenvalues of the
model, which is the eigenvalues of the system matrix A in the state-space
model ẋ = Ax+Bu. For transfer function models you can consider the
poles in stead of the eigenvalues (the poles and the eigenvalues are equal
for most systems not having pol-zero cancellations). If the model is
nonlinear, it must be linearized before calculating eigenvalues or poles.

Above, maximum values of the time-step h, or minimum values of the
sampling frequency fs, were presented. However, you may also use a
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trial-and-error method for choosing h (or fs): Reduce h until there is a
negligible change of the response of the system if h is further reduced. If
possible, you should use a simulator of your system to test the importance of
the value of h before implementation.

Example 8.4 Sampling frequency for a filter

In Example 8.3 a first order lowpass filter was discretized. Assume that the
bandwidth is ωb = 100rad/s. Let us set ωH = 5ωb = 500rad/s, and use the
lower limit of ωs as given by (152):

ωs = 5ωH = 25ωb = 2500rad/s (157)

which gives

h =
2π

ωs
=
2π

ωs
= 2.51ms (158)

Figure 19 shows the frequency responses of the continuous-time filter Hcont(s)
given by (145) and the discrete-time filter Hdisc(z) given by (146). The two

Figure 19: Example 8.4: Frequency responses of Hcont(s) given by (145) and
Hdisc(z) given by (146) with sampling frequency (157)

filters have quite equal frequency responses up to ωH , as specified.

[End of Example 8.4]
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8.4 The relation between continuous-time poles and
discrete-time poles

In design of discrete-time control systems and discrete-time state estimators
based on pole placement specifications it may be useful to know the above pole
transformations. Specifications in the form of s poles can then be transformed
to z poles, and the in e.g. pole placement controller design and pole placement
controller design [2]. Knowing pole transformations may also be useful in
stability analysis.

What is the relation between the poles {si} of the original continuous-time
system and the poles {zi} of the corresponding discrete-time system? The
answer depends on the discretization method used:

• Discretization using zero order hold element:
zi = e

sih (159)

And reversely:

si =
ln zi
h

(160)

(159) can be explained from (105) or from (106): The transfer function
G(s) of the continuous-time system has the poles {si}. Taking the
inverse Laplace transform of G(s)s in (105) yields a linear combination of

time functions of terms esit which is esikh =
¡
esih

¢k
when we use t = kh.

The z-transform of
¡
esih

¢k
is z

z−esih , cf. (353), and
z

z−esih has pole
zi = e

sik. Hence, (159) is proven.

• Discretization using Euler’s methods or Tustin’s method: The relation
between the poles are given by (142) — (144). Hence, we can calculate
the z poles by inserting the s poles in the proper expression on the right
side of (142) — (144).

Example 8.5 Pole transformations

Assume given that a continuous-time system with pole

s1 = −2 (161)

1. The system is discretized assuming a zero order hold element on the
systems input. The time-step is h = 0.1s. What is the pole of the
resulting discrete-time system? It is given by (159):

z1 = e
s1h = e−2·0.1 = e−0.2 = 0.8187 (162)

2. What is the pole if in stead the Tustin’s method is used? It is given by
(144):

z1 =
1 + 0.1

2 (−2)
1− 0.1

2 (−2)
=
1 + 0.1

2 (−2)
1− 0.1

2 (−2)
= 0.8182 (163)

(Thus, a slight difference.)

[End of Example 8.5]
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9 State space models

9.1 General form and linear form of state space models

The general form of a discrete-time state space model is

x(k + 1) = f [x(k), u(k)] (164)

y(k) = g[x(k), u(k)] (165)

where x is the state variable, u is the input variable which may consist of
control variables and disturbances (in this model definition there is no
difference between these two kinds of input variables). y is the output variable.
f and g are functions — linear or nonlinear. x(k + 1) in (164) means the state
one time-step ahead (relative to the present state x(k)). Thus, the state space
model expresses how the systems’ state (variables) and output variables
evolves along the discrete time axis.

The variables in (164) — (165) may actually be vectors, e.g.

x =


x1
x2
...
xn

 (166)

where xi is a (scalar) state variable, and if so, f and/or g are vector evaluated
functions.

A special case of the general state space model presented above is the linear
state space model:

x(k + 1) = Adx(k) +Bdu(k) (167)

y(k) = Cdx(k) +Ddu(k) (168)

where Ad (subindex d for discrete-time) is the transition matrix, Bd is the
input matrix, Cd is the output matrix and Dd is the direct output matrix (in
most cases, Dd = 0).

9.2 Discretization of linear continuous-time state space
models

9.2.1 Introduction

The needs for discretizing a continuous-time state space model are similar to
the needs for a discrete-time transfer function model, cf. Section 8.1:

• In accurate model based design of a discrete controller for a process
originally represented by a continuous-time state space model. This state
space model must be discretized before the design work.

• Implementation of continuous-time control and filtering functions in
computer program.
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The underlying principles of the various discretization methods are also the
same as for discretizing transfer function models:

• Discretization based on having a zero order hold element on the input of
the system which is the case when the physical process is controlled by a
computer via a DA converter (digital to analog). See Figure 16.

• Using a integral numerical approximation, typically Euler’s forward
method, Euler’s backward method or Tustin’s method.

9.2.2 Discretization with zero order hold element on the input

Assume given the following continuous-time state space model:

ẋ = Ax+Bu (169)

y = Cx+Du (170)

having a zero order hold element on its input, see Figure 16. It can be shown
that the following discrete-time state space model expresses how the state x
evolves along a discrete time axis:9

x(k + 1) = Adx(k) +Bdu(k) (171)

y(k) = Cdx(k) +Ddu(k) (172)

where
Ad = e

Ah (173)

Bd =

Z h

0

eAτ dτB (174)

Cd = C (175)

Dd = D (176)

In (173) and (174), e is the natural base. Ad = eAh is denoted the transition
matrix. It is a matrix exponential which can be calculated as described below.
One interpretation of Ad is that it tells how the transition from state x(k) to
state x(k + 1) takes place in an autonomous system (having u ≡ 0). This
transition is given by x(k + 1) = Adx(k).

Ad given by (173) and Bd given by (174) can be calculated in several ways.
Below are described two methods:

• Exact calculation:
Ad = L−1{(sI −A)−1}¯̄

t=h
= eAt

¯̄
t=h

= eAh (177)

Bd = L−1
½
(sI −A)−1 1

s
B

¾¯̄̄̄
t=h

=

Z h

0

eAτ dτB (178)

where L−1 means the inverse Laplace transform.
9The discrete-time state space model can be derived by using the Laplace transform to

calculate the state x(tk+1) = x(k + 1).
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• Approximative (numerical) calculation:

Ad = I +Ah+
A2h2

2!
+
A3h3

3!
+ · · · A

nhn

n!
· · · (179)

= I +A

µ
Ih+

Ah2

2!
+
A2h3

3!
+ · · · A

n−1hn

n!
· · ·
¶

| {z }
S

(180)

= I +AS (181)

Bd =

µ
Ih+

Ah2

2!
+
A2h3

3!
+ · · · A

n−1hn

n!
· · ·
¶

| {z }
S

B (182)

= SB (183)

where I is the identity matrix of the same dimension as A, and S is just
a common series term in Ad and Bd. Of course, the larger order n, the
more accurate resulting values of Ad and Bd.10 On the other hand, for a
given n, the discrete-time model is less accurate the larger h, and the
model may even become unstable if h is too large. (156) may be used as
a guideline for choosing h.

Example 9.1 Discretization of a double integrator

In this example the state space model

ẋ =

·
0 1
0 0

¸
| {z }

A

x+

·
0
1

¸
| {z }
B

u (184)

y = [1]|{z}
C

x+ [0]|{z}
D

u (185)

where x = [x1 x2]T is the state vector, will be discretized using the exact
method and the numerical method with order n = 1. This is a state space
model of the double integrator ÿ = u where y = x1. The time-step (sampling
interval) is h = 0.5s.

• Exact discretization: The matrices in the resulting discrete-time state
10With n = 1 the resulting state space model is actually the same as obtained using Euler’s

forward method, cf. Section 9.2.3.
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space model (171) — (172) becomes, using (177) — (178),

Ad = L−1
n
(sI −A)−1

o¯̄̄
t=h

= L−1
(·

s −1
0 s

¸−1)¯̄̄̄¯
t=h

= L−1
½·

1
s

1
s2

0 1
s

¸¾¯̄̄̄
t=h

=

·
1 t
0 1

¸¯̄̄̄
t=h

=

·
1 h
0 1

¸
=

·
1 0.5
0 1

¸
(186)

Bd = L−1
½
(sI −A)−1 1

s
B

¾¯̄̄̄
t=h

(187)

= L−1
(·

s −1
0 s

¸−1
1

s

·
0
1

¸)¯̄̄̄
¯
t=h

= L−1
½·

1
s3
1
s2

¸¾¯̄̄̄
t=h

(188)

=

·
h2

2
h

¸
=

·
0.125
0.5

¸
(189)

Cd = C = [1] (190)

Dd = D = [0] (191)

• Approximative (numerical) discretization: The matrices in the
resulting discrete-time state space model becomes, using (179) — (182)
with n = 1,

x(k + 1) = (I +Ah)x(k) +Bhu(k) (192)

=

·
1 h
0 1

¸
x(k) +

·
0
h

¸
u(k) (193)

=

·
1 0.5
0 1

¸
| {z }

Ad

x(k) +

·
0
0.5

¸
| {z }

Bd

u(k) (194)

Figure 20 shows simulated responses in the output variable y for a ramp in u
for the two discrete-time models and for the original continuous-time model.
The initial state is x(0) = [0, 0]T . It is the ramp after the zero order hold
element (this signal is stair-formed in Figure 20) that is used to excite the
continuous-time system. We observe the following:
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Figure 20: Example 9.1: Simulated responses for continuous-time system and two
different discrete-time models

• In the discrete points of time the response in the exactly discretized
model is equal to the response in the continuous-time model, as expected.

• The response of the approximative discrete-time model differs from the
exact response, as expected.

[End of Example 9.1]

9.2.3 Discretizing using Euler’s and Tustins’ numerical
approximations

The discretization methods described in this section do not assume zero order
hold on the system’s input. The basis of the methods is to get a discrete-time
model which hopefully behaves similar to the original continuous-time state
space model, which here is assumed linear:

ẋ = Ax+Bu| {z }
f()

(195)

y = Cx+Du (196)

where u is input variable and x is output variable. To simplify the notation we
let f(k) represent f [x(tk), u(tk)] = f [x(k), u(k)]. Actually, the discretization
formulas were developed in Section 8.3. All we have to do now is inserting
Ax(k) +Bu(k) for f(k) in (134) — (136), and then solve for x(k). The
resulting discretizing formulas are shown below:
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• Euler’s forward method:

x(k) = (I +Ah)x(k − 1) +Bhu(k − 1) (197)

or (equivalently)

x(k + 1) = (I +Ah)x(k) +Bhu(k) (198)

• Euler’s backward method:

x(k) = (I −Ah)−1x(k − 1) + (I −Ah)−1BTu(k) (199)

• Tustin’s method:

x(k) =

µ
I − Ah

2

¶−1µ
I +

Ah

2

¶
x(k − 1) (200)

+

µ
I − Ah

2

¶−1
Bh

2
[u(k) + u(k − 1)] (201)

A guideline for choosing a proper sampling time h is (156) in Section 8.3.3.

9.2.4 Discretizing nonlinear state space models

A general form of a nonlinear continuous-time state space model is

ẋ = f(x, u) (202)

where f() is a nonlinear function of x and/or u. It may be difficult to apply
Tustins’s method or Euler’s backward method for discretizing (202) since these
methods are implicit, which means that they do not immediately give an
explicit or isolated formula for the state variable x(k). For example, using
Euler’s backward method (135) on the model

ẋ = −√x+ 2u (203)

yields

x(k) ≈ x(k − 1) + hf [x(k), u(k)] (204)

= x(k − 1) + h
h
−
p
x(k) + 2u(k)

i
(205)

which is a nonlinear implicit equation for x(k). In general such equations are
not easy to solve, and an iterative procedure may be necessary.

In practical applications11 where you actually need a discretized version of a
nonlinear continuous-time model Euler’s forward method (134) is commonly
used. Inserting (202) into (134) yields the Euler’s forward discretizing formula:

x(k) = x(k − 1) + hf(k − 1) (206)

11As developing state estimators (Kalman filters)
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Example 9.2 Discretization of nonlinear model using Euler’s
backward method

Using (206) on (134) yields

x(k) = x(k − 1) + h
h
−
p
x(k − 1) + 2u(k − 1)

i
(207)

[End of Example 9.2]

9.3 Linearizing nonlinear state space models

The formulas for linearizing nonlinear discrete-time state space models are
presented without derivation below. They can be derived in the same way as
for linearizing nonlinear continuous-time models [3]. In the formulas below it
assumed a second order system. I guess it is clear how the formulas can be
generalized to higher orders.

Given the following continuous-time nonlinear state space model

x1(k) = f1[x1(k), x2(k), u1(k), u2(k)]

x2(k) = f2[x1(k), x2(k), u1(k), u2(k)]
(208)

y1(k) = g1[x1(k), x2(k), u1(k), u2(k)]

y2(k) = g2[x1(k), x2(k), u1(k), u2(k)]
(209)

where f1 and f2 are nonlinear functions. The corresponding linear model,
which defines the system’s dynamic behaviour about a specific operating
point, is

∆x1(k + 1) = ∂f1
∂x1

¯̄̄
op
∆x1(k) +

∂f1
∂x2

¯̄̄
op
∆x2(k) +

∂f1
∂u1

¯̄̄
op
∆u1(k) +

∂f1
∂u2

¯̄̄
op
∆u2(k)

∆x2(k + 1) = ∂f2
∂x1

¯̄̄
op
∆x1(k) +

∂f2
∂x2

¯̄̄
op
∆x2(k) +

∂f2
∂u1

¯̄̄
op
∆u1(k) +

∂f2
∂u2

¯̄̄
op
∆u2(k)

(210)

∆y1(k) = ∂g1
∂x1

¯̄̄
op
∆x1(k) +

∂g1
∂x2

¯̄̄
op
∆x2(k) +

∂g1
∂u1

¯̄̄
op
∆u1(k) +

∂g1
∂u2

¯̄̄
op
∆u2(k)

∆y2(k) = ∂g2
∂x1

¯̄̄
op
∆x1(k) +

∂g2
∂x2

¯̄̄
op
∆x2(k) +

∂g2
∂u1

¯̄̄
op
∆u1(k) +

∂g2
∂u2

¯̄̄
op
∆u2(k)

(211)
or

∆x(k + 1) = Ad∆x(k) +Bd∆u(k) (212)

∆y(k) = Cd∆x(k) +Dd∆u(k) (213)

where12

Ad =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

¯̄̄̄¯̄
op

=

·
∂f1
∂f2

¸
£
∂x1 ∂x2

¤
¯̄̄̄
¯̄̄̄
op

=
∂f

∂xT

¯̄̄̄
op

(214)

12Partial derivative matrices are denoted Jacobians.
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Bd =
∂f

∂uT

¯̄̄̄
op

(215)

Cd =
∂g

∂xT

¯̄̄̄
op

(216)

Dd =
∂g

∂uT

¯̄̄̄
op

(217)

In the formulas above the subindex op is for operating point, which is a
particular set of values of the variables. Typically the operating point is an
equilibrium (or static) operating point, which means that all variables have
constant values.

9.4 Calculating responses in discrete-time state space
models

9.4.1 Calculating dynamic responses

Calculating responses in discrete-time state space models is quite easy. The
reason is that the model is the algorithm! For example, assume that Euler’s
forward method has been used to get the following discrete-time state space
model:

x(k) = x(k − 1) + hf(k − 1) (218)

This model constitutes the algorithm for calculating the response x(k).

9.4.2 Calculating static responses

The static response is the response when all input variables have constant
values and all output variables have converged to constant values. Assume the
following possibly nonlinear state space model:

x(k + 1) = f1 [x(k), u(k)] (219)

where f1 is a possibly nonlinear function of x and u. Let us write xs and us
for static values. Under static conditions (219) becomes

xs = f1 [xs, us] (220)

which is an algebraic equation from which we can try to solve for unknown
variables.

If the model is linear:

x(k + 1) = Adx(k) +Bdu(k) (221)

a formula of the steady-state solution can be calculated as follows. The
steady-state version of (221) is

xs = Adxs +Bdus (222)

Solving for xs gives
xs = (I −Ad)−1Bdus (223)

Note that only asymptotically stable systems have a feasible static operating
point. Stability of discrete-time systems is analyzed in Section 11.
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9.5 From state space model to transfer function

Given the following linear discrete-time state space model:

x(k + 1) = Adx(k) +Bdu(k) (224)

y(k) = Cdx(k) +Ddu(k) (225)

We will now calculate a general formula for the z-transfer function H(z) from
input u to output y. (If u and/or y are vectors, the transfer function we
calculate is actually a transfer function matrix.) Taking the z-transform of
(224) yields

zx(z) = zIx(z) = Adx(z) +Bdu(z) (226)

where I is the identity matrix having the same order as the number of state
variables. Solving for x(z) gives

x(z) = (zI −Ad)−1Bdu(z) (227)

Combining with (225) gives the following formula(s) for the transfer function:

H(z) =
y(z)

u(z)
= Cd(zI −Ad)−1Bd +Dd (228)

= Cd
adj(zI −Ad)
det(zI −Ad)Bd +Dd (229)

which is the formula for H(z). adj means adjoint, and det means determinant.
(zI −Ad) is denoted the characteristic matrix of the system.

Example 9.3 Transfer function of the double integrator

In Example 9.1 the discrete-time state space model of a double integrator was
derived The model is on the form (224) — (225) with system matrices as given
by (186) — (191). We will now calculate the z-transfer function from u to
y = x1 using (229). We start by calculating the characteristic matrix zI −Ad.
Here, Ad is given by (186). We get

(zI −Ad) =
·
z 0
0 z

¸
| {z }

zI

−
·
1 h
0 1

¸
| {z }

Ad

=

·
z − 1 −h
0 z − 1

¸
(230)

which gives

adj (zI −Ad) = adj
·
z − 1 −h
0 z − 1

¸
=

·
z − 1 h
0 z − 1

¸
(231)

and

det (zI −Ad) = det
·
z − 1 −h
0 z − 1

¸
= z2 − 2z + 1 (232)
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Bd is given by (188). Cd is [1 0], and Dd = 0. The transfer function becomes

y(z)

u(z)
= Dd(zI −Ad)−1Bd = Dd adj(zI −Ad)

det(zI −Ad)Bd (233)

= [1 0] · 1

z2 − 2z + 1 ·
·
z − 1 h
0 z − 1

¸
·
·

h2

2
h

¸
(234)

=
h2

2

z + 1

z2 − 2z + 1 (235)

[End of Example 9.3]

9.6 From transfer function to state space model

Assume that you need a state space model which has the following transfer
function,

y(z)

u(z)
= H(z) =

bnz
n + bn−1zn−1 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0 (236)

Note that the coefficient in the zn term in the denominator is 1 (= an).
Actually, there are an infinite number of state space models having the above
transfer function. Therefore it may be wise to choose one of the so-called
canonical state space models which have defined structures. One such
canonical model is presented here. It can be shown that (236) is the transfer
function from u to y in the (canonical) block diagram shown in Figure 21. The

y(k)

b1

1/z

a1

1/z

b0

a0

bn-1

1/z

an-1

1/z

bn-2

an-2

bn

x1(k)x2xn-1xnu(k)
x1(k+1)

Figure 21: The transfer function from u to y in this (canonical) block diagram is
(236).

variables on the outputs of the time-step delay blocks (containing 1/z) are
canonical state variables. From the block diagram we can write down the
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following canonical state space model:

x1(k + 1) = x2(k)
x2(k + 1) = x3(k)

...
xn−1(k + 1) = xn(k)
xn(k + 1) = −a0x1(k)− a1x2(k)− · · ·− an−1xn(k) + u(k)

y(k) = (b0 − bna0)x1(k) + · · ·+ (bn−1 − bnan−1)xn(k) + bnu(k)
(237)

which is a linear state space model which compactly can be written as
(however, the matrices will not be shown here):

x(k + 1) = Adx(k) +Bdu(k) (238)

y(k) = Cdx(k) +Ddu(k) (239)

Example 9.4 Canonical state space model

We will find a state space model having the following transfer function:

y(z)

u(z)
= H(z) =

2z−3

1− 0, 5z−1 (240)

First we write the the transfer function on the standard form (236):

H(z) =
2

z3 − 0, 5z2 =
b3z

3 + b2z
2 + b1z + b0

z3 + a2z2 + a1z + a0
(241)

hence, the coefficients are b3 = 0 = b2 = b1, b0 = 2, a2 = −0.5 and a1 = 0 = a0.
From (237) we get the following state space model:

x1(k + 1) = x2(k)
x2(k + 1) = x3(k)
x3(k + 1) = 0, 5x3(k) + u(k)

y(k) = 2x1(k)

(242)

[End of Example 9.4]

10 Dynamics of discrete-time systems

I this section we will study a few important types of discrete-time dynamic
systems represented in the form of transfer functions, namely gain, integrator,
first order system, and system with time delay.
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10.1 Gain

A discrete-time gain has the transfer function

y(z)

u(z)
= H(z) = K (243)

where K is the (proportional) gain, u is the input y is the output. The gain
has no poles and no zeros and has therefore no “dynamics”. In the time
domain the relation between u and y is given by

y(k) = Ku(k) (244)

Thus, the output is proportional to the input.

10.2 Integrator

We start with the continuous-time integrator represented by the following
integral equation

y(t) = y(0) +

Z t

0

Kiu(τ) dτ (245)

which corresponds to the following differential equation

ẏ = Kiu (246)

The s transfer function from u to y is

y(s)

u(s)
= H(s) =

Ki

s
(247)

Ki is the integral gain. This integrator can be discretized in several ways, cf.
Section 8. Let us confine ourselves to discretization using zero order hold
element on the input, cf. Section 8.2.1. It can be shown13 that the
discrete-time transfer function becomes

y(z)

u(z)
= H(z) =

Kih

z − 1 (248)

where h is the time-step. The pole is

p = 1 (249)

The step response (unit step at the input) of H(z) can be calculated as
follows: Assume that the step in input u has amplitude U , which
z-transformed is, cf. (352),

u(z) =
Uz

z − 1 (250)

The z-transform of the step response becomes

ystep(z) = H(z)u(z) =
Kih

z − 1 ·
Uz

z − 1 (251)

13You can e.g. apply (106) together with (355) with a = 1.
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Taking the inverse transform using (355) yields

ystep(h) = KiUhk (252)

Figure 22 shows the pole and the step response (unity step) for with Ki = 1
and time-step h = 1.

Figure 22: Pole and step response (unity step) for the integrator (248) with Ki = 1
and time step h = 1

In some cases a given discrete-time transfer function H(z) should be modified
so that it gets integrating action. One example is design of a control function
with integrating action. Integrator action can be added (included) by
multiplying the original transfer function, say H0(z), by the factor

Hint(z) =
h

z − 1 (253)

so that the resulting transfer function is

H(z) = H0(z)Hint = H0(z)
h

z − 1 (254)

(thereby adding the pole +1).

10.3 First order system

Here is a general first order discrete-time transfer function:

H(z) =
y(z)

u(z)
=

b

z − p (255)

where p is the pole, which is on the real axis. Let us study the step response
for different values of p. Assume that the step in input u has amplitude U ,
which z-transformed is, cf. (352),

u(z) =
Uz

z − 1 (256)
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The z-transform of the step response becomes

ystep(z) = H(z)u(z) =
b

z − p ·
Uz

z − 1 (257)

Taking the inverse transform using (354) yields

ystep(k) =
bU

1− p
¡
1− pk¢ (258)

Let us study the following different cases, given by the pole p:

• p = 1: The transfer function (255) is then

H(z) =
b

z − 1 (259)

and the system is an integrator. This case is covered in Section 10.2.

• 0 < p < 1: As an example, let us consider the transfer function (255)
having p = 0.82 and b = 0.18. This transfer function happens to be the
discretized version of the continuous-time transfer function

G(s) =
K

Ts+ 1
(260)

with time-step h = 0.2s (the discretization was performed in 8.1). Figure

Figure 23: Pole placement and the step response (unit step at the input) of H(z)
given by (255) for p = 0.82 and b = 0.18.

23 shows the pole placement and the step response (unit step at the
input) of H(z) given by (255). The step response has an exponential
convergence towards its steady-state value.

Assuming that H(z) is the discretized G(s), the discrete-time pole is

p = e−h/T (261)

from which we can conclude that the a smaller p (smaller time constant
T ) gives a faster response. This can also be seen from (258).



Finn Haugen, TechTeach: Discrete-time signals and systems 53

• p = 0: The transfer function (255) becomes

H(z) =
b

z
= bz−1 (262)

which is the transfer function of a delay of one time-step, cf. (51). The
pole is in origin. Discrete-time time delay is described in more detail in
Section 10.4.

• −1 < p < 0: The transfer function is still (255). The step response is still
(258). Assume as an example that p = −0.8 and b = 1. Figure 24 shows
the pole and the step response. The step response now oscillates, but it

Figure 24: Pole and step response for p = −0.8 and b = 1

converges towards a steady-state value. (Continuous-time first order
systems can not oscillate, but discrete-time first order systems can.)

• p = −1: The transfer function (255) becomes

H(z) =
b

z + 1
(263)

The step response is (258). Assume that b = 1. Figure 25 shows the pole
and the step response which shows undamped oscillations of period 2
time-steps. The oscillations is denoted “ringing”.

10.4 System with time delay

According to (344) multiplying a z-transform by z−n means time delay by n
time-steps, i.e. n · h. Thus, the transfer function of a time delay of n
time-steps is

H(z) = z−n =
1

zn
(264)

The transfer function has n poles in origin. Figure 26 shows the poles and the
step response for n = 5. The time-step is h = 0.5.



Finn Haugen, TechTeach: Discrete-time signals and systems 54

Figure 25: Pole and step response for p = −1 and b = 1

Figure 26: Poles and the step response for n = 5. The time step is h = 0.5.

11 Stability analysis

11.1 Stability properties

Assume given a dynamic system with input u and output y. The stability
property of a dynamic system can be defined from the impulse response14 of a
system as follows:

• Asymptotic stable system: The steady state impulse response is zero:

lim
k→∞

yδ(k) = 0 (265)

• Marginally stable system: The steady state impulse response is
14There is an impulse δ(0) on the input.
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different from zero, but limited:

0 < lim
k→∞

yδ(k) <∞ (266)

• Unstable system: The steady state impulse response is unlimited:
lim
k→∞

yδ(k) =∞ (267)

The impulse response for the different stability properties are illustrated in
Figure 27. (The simulated system is defined in Example 11.1.)

Figure 27: Impulse repsonse and stability properties

11.2 Stability analysis of transfer function models

The impulse response yδ(k) is determined by the poles of the system’s poles
and zeros since the impulse responses is the inverse z-transform of the transfer
function, cf. Example 6.2:

yδ(k) = Z−1{H(z)} (268)

Consequently, the stability property is determined by the poles and zeros of
H(z). However, we will soon see that only the poles determine the stability.
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We will now derive the relation between the stability and the poles by
studying the impulse response of the following system:

H(z) =
y(z)

u(z)
=

bz

z − p (269)

The pole is p. Do you think that this system is too simple as a basis for
deriving general conditions for stability analysis? Actually, it is sufficient
because we can always think that a given z-transfer function can be partial
fractionated in a sum of partial transfer functions or terms each having one
pole. Using the superposition principle we can conclude about the stability of
the original transfer function.

In the following, cases having of multiple (coinciding) poles will be discussed,
but the results regarding stability analysis will be given.

From Example 6.2 we know that the z-transform of the impulse response of a
system is the transfer function of the system. The system given by (269) has
the following impulse response calculated below. It is assumed that the pole in
general is a complex number which may be written on polar form as

p = mejθ (270)

where m is the magnitude and θ the phase. The impulse response is

yδ(k) = Z−1
½

bz

z − p
¾

(271)

= Z−1
½

p

1− pz−1
¾

(272)

= Z−1
(
b
∞X
k=0

pkz−k
)

(273)

= bpk (274)

= b|m|kejkθ (275)

From (275) we see that it is the magnitude m which determines if the steady
state impulse response converges towards zero or not. From (275) we can now
state the following relations between stability and pole placement (the
statements about multiple poles have however not been derived here):

• Asymptotic stable system: All poles lie inside (none is on) the unit
circle, or what is the same: all poles have magnitude less than 1.

• Marginally stable system: One or more poles — but no multiple poles
— are on the unit circle.

• Unstable system: At least one pole is outside the unit circle. Or:
There are multiple poles on the unit circle.

The “stability areas” in the complex plane are shown in Figure 28.

Let us return to the question about the relation between the zeros and the
stability. We consider the following system:

H1(z) =
y(z)

u(z)
=
b(z − c)
z − p = (z − c)H(z) (276)
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Figure 28: “Stability areas” in the complex plane

where H(z) is it the “original” system (without zero) which were analyzed
above. The zero is c. H1(z) can be written as

H1(z) =
bz

z − p +
−bc
z − p (277)

= H(z)− cz−1H(z) (278)

The impulse response of H1(z) becomes

yδ1(k) = yδ(k)− cyδ(k − 1) (279)

where yδ(k) is the impulse response of H(z). We see that the zero does not
influence wether the steady state impulse response converges towards to zero
or not. We draw the conclusion that eventual zeros in the transfer function do
not influence the stability of the system.

Example 11.1 Stability analysis of discrete-time system

The three responses shown in Figure 27 are actually the impulse responses in
three systems each having a transfer function on the form

y(z)

u(z)
= H(z) =

b1z + b0
z2 + a1z + a0

(280)

The parameters of the systems are given below:

1. Asymptotically stable system: b1 = 0.019, b0 = 0.0190, a1 = −1.885 and
a0 = 0.923. The poles are

z1, 2 = 0.94± j0.19 (281)

They are shown in Figure 29 (the zero is indicated by a circle). The
poles are inside the unity circle.
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2. Marginally stable system: b1 = 0.020, b0 = 0.020, a1 = −1.96 and
a0 = 1.00. The poles are

z1, 2 = 0.98± j0.20 (282)

They are shown in Figure 29. The poles are on the unity circle.

3. Unstable system: b1 = 0.021, b0 = 0.021, a1 = −2.04 and a0 = 1.08. The
poles are

z1, 2 = 1.21± j0.20 (283)

They are shown in Figure 29. The poles are outside the unity circle.

Figure 29: Example 11.1: Poles (and zeros) for the three systems each having
different stability property

[End of Example 11.1]
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11.3 Stability analysis of state space models

Assume that the system has the following state space model:

x(k + 1) = Adx(k) +Bdu(k) (284)

y(k) = Cdx(k) +Ddu(k) (285)

In Section 9.5 we derived a formula for the transfer function from u(z) to y(z).
It is repeated here:

H(z) =
y(z)

u(z)
= Cd(zI −Ad)−1Bd +Dd (286)

= Cd
adj(zI −Ad)
det(zI −Ad)Bd +Dd (287)

The poles are the roots of the characteristic equation:

det(zI −Ad) = 0 (288)

The stability property is determined by the placement of the poles in the
complex plane. Therefore, to determine the stability property of a state space
model, we may just compute the poles of the system, and conclude about the
stability as explained in Section 11.2.

The equation (288) actually defines the eigenvalues of the system: The
eigenvalues are the z-solutions to 288. Therefore, the poles are equal to the
eigenvalues, and the relation between stability properties and eigenvalues are
the same relation as between stability properties and poles, cf. Section 11.2.

Internal and external stability Actually, if there are
pole-zero-cancellations in (287), the cancelled poles are not among the
eigenvalues, and the conclusion about stability based on the poles may be
different from the conclusion based on the eigenvalues. For example, assume
that an unstable pole (lying outside the unity circle) has been cancelled by a
zero of same value when calculating (287), and that the uncanceled rest poles
are asymptotically stable. The set of eigenvalues are equal to the set of
cancelled and uncanceled poles. So the eigenvalue based analysis would say
“unstable” while the pole based analysis would say “asymptotically stable”.

Generally speaking, the eigenvalues determines the internal stability property,
while the poles determines the external or input-output stability property of
the system. In an internally unstable but internally asymptotically stable
system there will one or more state variables that shows an unlimited response
as time goes to infinity, while the impulse response in the output goes to zero.

For most systems there are no pole-zero cancellations, and, hence, the internal
and external stability is the same.

11.4 Stability analysis of feedback (control) systems

The contents of this section (and subsections) follows the description of
stability analysis of continuous-time feedback systems in Section 6.4 in the
book PID Control [4].
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Although it is assumed here that the feedback system is a control system, the
stability analysis methods described can be applied to any (linear) feedback
system.

11.4.1 Defining the feedback system

Stability analysis is important in control theory. Figure 30 shows a block
diagram of a feedback control system. To analyze the stability of the feedback

em(z)
Hc(z) Hu(z)

u(z) y(z)ymSP(z)ySP(z)

Hd(z)

d(s)Process

Model of
sensor with 

scaling

Controller

Disturbance
transfer function

Actuator
transfer function

Hs(z)

Sensor
(measurement)

with scaling

Hsm(z)

ym(z)

Setpoint Control
error

Measurement

Process
output

variable

Process
disturbance

Control
variable

Setpoint
in measurement

unit

Figure 30: Feedback control system where the subsystems are represented by trans-
fer functions

system (loop) it is sufficient to study an extracted part of the block diagram
shown in Figure 30. Figure 31 shows this extracted part and how it can be
made into a compact block diagram. The stability analysis will be based this
compact block diagram. It has one single transfer function block containing
the loop transfer function, L(z), which is the product of the transfer functions
in the loop:

L(z) = Hc(z)Hu(z)Hs(z)| {z }
Hp(z)

= Hc(z)Hp(z) (289)

The closed loop transfer function is the transfer function from input (setpoint)
ymSP to output ym (process measurement), and it denoted the tracking
transfer function:

T (z) =
L(z)

1 + L(z)
=

nL(z)
dL(z)

1 + nL(z)
dL(z)

=
nL(z)

dL(z) + nL(z)
(290)
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ymSP ym
L(s)

ymSP u
Hc(z) Hu(z) Hs(z)

ymy

ymSP u
Hc(z) Hp(z)

ym

Hp(z)

L(z)

Making compact

Making compact

Figure 31: Converting an extracted part of the detailed block diagram in Figure 30
into a compact block diagram. L(z) is the loop transfer function.

where nL(z) and dL(z) are the numerator and denominator polynomials of
L(z), respectively. The stability of the feedback system is determined by the
stability of T (z).

11.4.2 Pole placement based stability analysis

The characteristic polynomial of the tracking transfer function (290) is

c(z) = dL(z) + nL(z) (291)

Hence, the stability of the control system is determined by the placement of
the roots of (291) in the complex plane.

Example 11.2 Pole based stability analysis of feedback system

Assume given a control system where a P controller controls an integrating
process. The controller transfer function is

Hc(z) = Kp (292)
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and the process transfer function is, cf. (248),

Hp(z) =
Kih

z − 1 (293)

We assume that Ki = 1 and h = 1. The loop transfer function becomes

L(z) = Hc(z)Hp(z) =
Kp

z − 1 =
dL(z)

nL(z)
(294)

We will calculate the range of values of Kp that ensures asymptotic stability of
the control system.

The characteristic polynomial is, cf. (291),

c(z) = dL(z) + nL(z) = Kp + z − 1 (295)

The pole is
p = 1−Kp (296)

The feedback system is asymptotically stable if p is inside the unity circle or
has magnitude less than one:

|p| = |1−Kp| < 1 (297)

which is satisfied with
0 < Kp < 2 (298)

Assume as an example that Kp = 1.5. Figure 32 shows the step response in ym
for this value of Kp.

Figure 32: Example 11.2: Step resonse in ym. There is a step of amplitude ymSP .

[End of Example 11.2]
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11.4.3 Nyquist’s stability criterion for feedback systems

The Nyquist’s stability criterion is a graphical tool for stability analysis of
feedback systems. The traditional stability analysis based on the frequency
response of L(z) in a Bode diagram is based on Nyquist’s stability criterion.
In the following the Nyquist’s stability criterion for discrete-time systems will
be described briefly. Fortunately, the principles and methods of the stability
analysis are much the same as for continuous-time systems [4].

In Section 11.4.1 we found that the characteristic polynomial of a feedback
system is

c(z) = dL(z) + nL(z) (299)

The poles of the feedback system are the roots of the equation c(z) = 0. These
roots are the same as the roots of the following equation:

dL(z) + nL(z)

dL(z)
= 1 +

nL(z)

dL(z)
≡ 1 + L(z) = 0 (300)

which we denote the characteristic equation. In the discrete-time case, as in
the continuous-time case, the stability analysis is about determining the
number of unstable poles of the feedback system. Such poles lie outside the
unit circle in the z plane.

(300) is the equation from which the Nyquist’s stability criterion will be
derived. In the derivation we will use the Argument Variation Principle:

Argument Variation Principle: Given a function f(z) where z is a
complex number. Then f(z) is a complex number, too. As with all
complex numbers, f(z) has an angle or argument. If z follows a closed
contour Γ (gamma) in the complex z-plane which encircles a number of
poles and a number of zeros of f(z), see Figure 33, then the following
applies:

arg
Γ
f(z) = 360◦ ·(number of zeros minus number of poles of f(z) inside Γ)

(301)
where argΓ f(z) means the change of the angle of f(z) when z has
followed Γ once in positive direction of circulation .

For the purpose of stability analysis of feedback systems, we let the function
f(z) in the Argument Variation Principle be

f(z) = 1 + L(z) (302)

The Γ contour must encircle the entire complex plane outside the unit circle in
the z-plane, so that we are certain that all poles and zeros of 1 + L(z) are
encircled. From the Argument Variation Principle we have (below UC is unit
circle):
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of circulation

Γ contour Unit
circle

Infinite
radius

Unstable pole area

Stable pole area
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B

A2

Figure 33: In the Nyquist’s stability criterion for discrete-time systems, the Γ-
contour in the Argument Variation Principle [4] must encircle the whole area outide
the unit circle. The letters A and B identifies parts of the Γ-contour (cf. the text).

arg
Γ
[1 + L(z)] = arg

Γ

dL(z) + nL(z)

dL(z)
(303)

= 360◦ · (number of roots of (dL + nL) outside UC15
minus number roots of dL outside UC) (304)

= 360◦ · (number poles of closed loop system outside UC

minus number poles of open system outside UC)

= 360◦ · (PCL − POL) (305)

By “open system” we mean the (imaginary) system having transfer function
L(z) = nL(z)/dL(z), i.e., the original feedback system with the feedback
broken. The poles of the open system are the roots of dL(z) = 0.

Finally, we can formulate the Nyquist’s stability criterion. But before we do
that, we should remind ourselves what we are after, namely to be able to
determine the number poles PCL of the closed loop system outside the unit
circle. These poles determines whether the closed loop system (the control
system) is asymptotically stable or not. If PCL = 0 the closed loop system is
asymptotically stable.

Nyquist’s Stability Criterion: Let POL be the number of poles of the open
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system outside the unit circle, and let argΓ [1 + L(z)] be the angular
change of the vector [1 + L(z)] as z have followed the Γ contour once in
positive direction of circulation. Then, the number poles PCL of the
closed loop system outside the unit circle, is

PCL =
argΓ [1 + L(z)]

360◦
+ POL (306)

If PCL = 0, the closed loop system is asymptotically stable.

Let us take a closer look at the terms on the right side of (306): POL are the
number of the roots of dL(z), and there should not be any problem calculating
that number. What about determining the angular change of the vector
1 + L(z)? Figure 34 shows how the vector (or complex number) 1 + L(z)
appears in a Nyquist diagram for a typical plot of L(z). A Nyquist diagram is
simply a Cartesian diagram of the complex plane in which L is plotted.
1 + L(z) is the vector from the point (−1, 0j), which is denoted the critical
point, to the Nyquist curve of L(z).

Re L(z)

Im L(z)

1

1 + L(z)

The 
critical 
point

Decreasing ω

Positive ω

Negative ω

0

Nyquist 
curve of 
L(z)

Curve B
is mapped
to origo

Curve A1

is mapped
to here

Curve A2

is mapped
to here

Figure 34: Typical Nyquist curve of L(z). The vector 1 + L(z) is drawn.

More about the Nyquist curve of L(z) Let us take a more detailed look
at the Nyquist curve of L as z follows the Γ contour in the z-plane, see Figure
33. In practice, the denominator polynomial of L(z) has higher order than the
numerator polynomial. This implies that L(z) is mapped to the origin of the
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Nyquist diagram when |z| =∞, which corresponds to contour B in Figure 33.
The unit circle, contour A1 plus contour A2 in Figure 33, constitutes (most of)
the rest of the Γ contour. There, z has the value

z = ejωh (307)

Consequently, the loop transfer function becomes L(ejωh) when z is on the
unit circle. For z on A1 in Figure 33, ω is positive, and hence L(ejωh) is the
frequency response of L. A consequence of this is that we can determine the
stability property of a feedback system by just looking at the frequency
response of the loop transfer function, L(ejωh). For z on A2 in Figure 33 ω is
negative, and the frequency response has a pure mathematical meaning. From
general properties of complex functions,

|L(ej(−ω)h)| = |L(ej(+ω)h)| (308)

and
argL(ej(−ω)h) = − argL(ej(+ω)h) (309)

Therefore the Nyquist curve of L(z) for ω < 0 will be identical to the Nyquist
curve for ω > 0, but mirrored about the real axis. Thus, we only need to know
how L(ejωh) is mapped for ω ≥ 0. The rest of the Nyquist curve then comes
by itself! Actually we need not draw more of the Nyquist curve (for ω > 0)
than what is sufficient for determining if the critical point is encircled or not.

If L(z) has poles on the unit circle, i.e. if dL(z) has roots in the unit circle, we
must let the Γ contour pass outside these poles, otherwise the function
1 + L(z) is not analytic on Γ. Assume the common case that L(z) contain a
pure integrator (which may be the integrator of the PID controller). This
implies that L(z) contains 1/(z − 1) as factor. We let the Γ contour pass just
outside the point z = 1 in such a way that the point is not encircled by Γ. It
may be shown that this passing maps z onto an infinitely large semicircle
encircling the right half plane in Figure 34.

11.4.4 Nyquist’s special stability criterion

In most cases the open system is stable, that is, POL = 0. (306) then becomes

PCL =
argΓ[L(z)]

360◦
(310)

This implies that the feedback system is asymptotically stable if the Nyquist
curve does not encircle the critical point. This is the Nyquist’s special stability
criterion or the Nyquist’s stability criterion for open stable systems.

The Nyquist’s special stability criterion can also be formulated as follows: The
feedback system is asymptotically stable if the Nyquist curve of L has the
critical point on its left side for increasing ω.

Another way to formulate Nyquist’s special stability criterion involves the
following characteristic frequencies: Amplitude crossover frequency ωc and
phase crossover frequency ω180. ωc is the frequency at which the L(ejωh)
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curve crosses the unit circle, while ω180 is the frequency at which the L(ejωh)
curve crosses the negative real axis. In other words:

|L(ejωch)| = 1 (311)

and
argL(ejω180h) = −180◦ (312)

See Figure 35. Note: The Nyquist diagram contains no explicit frequency axis.

Re L(z)

Im L(z)

1

Decreasing ω
Positive ω

0

Unit circle
j

L(ejω180h)

L(ejωch)

Figure 35: Definition of amplitude crossover frequency ωc and phase crossover
frequency ω180

We can now determine the stability properties from the relation between these
two crossover frequencies:

• Asymptotically stable closed loop system: ωc < ω180

• Marginally stable closed loop system: ωc = ω180

• Unstable closed loop system: ωc > ω180

11.4.5 Stability margins: Gain margin GM and phase margin PM

An asymptotically stable feedback system may become marginally stable if the
loop transfer function changes. The gain margin GM and the phase margin
PM [radians or degrees] are stability margins which in their own ways
expresses how large parameter changes can be tolerated before an
asymptotically stable system becomes marginally stable. Figure 36 shows the
stability margins defined in the Nyquist diagram. GM is the (multiplicative,
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Re L(z)

Im L(z)

1
0
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L(ejω180h)

L(ejωch)
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Figure 36: Gain margin GM and phase margin PM defined in the Nyquist diagram

not additive) increase of the gain that L can tolerate at ω180 before the L
curve (in the Nyquist diagram) passes through the critical point. Thus,¯̄

L(ejω180h)
¯̄ ·GM = 1 (313)

which gives

GM =
1

|L(ejω180h)| =
1

|ReL(ejω180h)| (314)

(The latter expression in (314) is because at ω180, ImL = 0 so that the
amplitude is equal to the absolute value of the real part.)

If we use decibel as the unit (like in the Bode diagram which we will soon
encounter), then

GM [dB] = − ¯̄L(ejω180h)¯̄ [dB] (315)

The phase margin PM is the phase reduction that the L curve can tolerate at
ωc before the L curve passes through the critical point. Thus,

argL(ejωch)− PM = −180◦ (316)

which gives
PM = 180◦ + argL(ejωch) (317)

We can now state as follows: The feedback (closed) system is asymptotically
stable if

GM > 0dB = 1 and PM > 0◦ (318)

This criterion is often denoted the Bode-Nyquist stability criterion.

Reasonable ranges of the stability margins are

2 ≈ 6dB ≤ GM ≤ 4 ≈ 12dB (319)

and
30◦ ≤ PM ≤ 60◦ (320)

The larger values, the better stability, but at the same time the system
becomes more sluggish, dynamically. If you are to use the stability margins as
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design criterias, you can use the following values (unless you have reasons for
specifying other values):

GM ≥ 2.5 ≈ 8dB and PM ≥ 45◦ (321)

For example, the controller gain, Kp, can be adjusted until one of the
inequalities becomes an equality.16

It can be shown that for PM ≤ 70◦, the damping of the feedback system
approximately corresponds to that of a second order system with relative
damping factor

ζ ≈ PM

100◦
(322)

For example, PM = 50◦ ∼ ζ = 0.5.

Example 11.3 Stability analysis in Nyquist diagram

Given the following continuous-time process transfer function:

Hp(s) =
ym(z)

u(z)
=

K³
s
ω0

´2
+ 2ζ s

ω0
+ 1

e−τs (323)

with parameter values

K = 1; ζ = 1; ω0 = 0.5rad/s; τ = 1s (324)

The process is controlled by a discrete-time PI-controller having the following
z-transfer function, which can be derived by taking the z-transform of the PI
control function (31),

Hc(z) =
Kp

³
1 + h

Ti

´
z −Kp

z − 1 (325)

where the time-step (or sampling interval) is

h = 0.2s (326)

Tuning the controller with the Ziegler-Nichols’ closed-loop method [4] in a
simulator gave the following controller parameter settings:

Kp = 2.0; Ti = 5.6s (327)

To perform the stability analysis of the discrete-time control system Hp(s) is
discretized assuming first order hold. The result is

Hpd(z) =
0.001209z + 0.001169

z2 − 1.902z + 0.9048 z
−10 (328)

The loop transfer function is

L(z) = Hc(z)Hpd(z) (329)
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Figure 37: Example 11.3: Nyquist diagram of L(z)

Figure 37 shows the Nyquist plot of L(z). From the Nyquist diagram we read
off

ω180 = 0.835rad/s (330)

and
ReL(ejω180h) = −0.558 (331)

which gives the following gain margin, cf. (314),

GM =
1

|ReL(ejω180h)| =
1

|−0.558| = 1.79 = 5.1dB (332)

The phase margin can be found to be

PM = 35◦ (333)

Figure 38 shows the step response in ym (unity step in setpoint ymSP ).

[End of Example 11.3]

11.4.6 Stability margin: Maximum of sensitivity function

The sensitivity (transfer) function S is frequently used to analyze feedback
control systems in various aspects. [4] It is

S(z) =
1

1 + L(z)
(334)

16But you should definitely check the behaviour of the control system by simulation, if
possible.
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Figure 38: Example 11.3: Step response in ym (unity step in setpoint ymSP )

where L(z) is the loop transfer function. S has various interpretations: One is
being the transfer function from setpoint ymSP to control error e in the block
diagram in Figure 30:

S(z) =
em(z)

ymSP (z)
(335)

A Bode plot of S(z) can be used in frequency response analysis of the setpoint
tracking property of the control system. One other interpretation of S is being
the ratio of the z-transform of the control error in closed en loop control and
the control error in open loop control, when this error is caused by an
excitation in the disturbance d, cf. Figure 30. Thus,

S(z) =
edisturb(z)closed loop system
edisturb(z)open loop system

(336)

(336) expresses the disturbance compensation property of the control system.

Back to the stability issue: A measure of a stability margin alternative to the
gain margin and the phase margin is the minimum distance from the L(ejωh)
curve to the critical point. This distance is

¯̄
1 + L(ejωh)

¯̄
, see Figure 39. So,

we can use the minimal value of
¯̄
1 + L(ejωh)

¯̄
as a stability margin. However,

it is more common to take the inverse of the distance: Thus, a stability margin
is the maximum value of 1/

¯̄
1 + L(ejωh)

¯̄
. And since 1/[1 + L(z)] is the

sensitivity function S(z) [4], then
¯̄
S(ejωh)

¯̄
max

represents a stability margin.
Reasonable values are in the range

1.5 ≈ 3.5dB ≤ ¯̄S(ejωh)¯̄
max
≤ 3.0 ≈ 9.5dB (337)

If you use
¯̄
S(ejωh)

¯̄
max

as a criterion for adjusting controller parameters, you
can use the following criterion (unless you have reasons for some other
specification): ¯̄

S(ejωh)
¯̄
max

= 2.0 ≈ 6dB (338)

Example 11.4 |S|max as stability margin
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Re L(z)

Im L(z)

1
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L

|1+L|min

= |S|max

Figure 39: The minimum distance between the L(ejωh) curve and the critical point
can be interpreted as a stability margin. This distance is |1 + L|min = |S|max.

See Example 11.3. It can be shown that

|S|max = 8.9dB = 2.79 =
1

0.36
=

1

|1 + L|min
(339)

[End of Example 11.4]

Frequency of the sustained oscillations There are sustained oscillations
in a marginally stable system. The frequency of these oscillations is
ωc = ω180.This can be explained as follows: In a marginally stable system,
L(ej(±ω180)h) = L(ej(±ωc)h) = −1. Therefore,
dL(e

j(±ω180)h) + nL(ej(±ω180)h) = 0, which is the characteristic equation of the
closed loop system with ej(±ω180)h inserted for z. Therefore, the system has
ej(±ω180)h among its poles. The system usually have additional poles, but they
lie in the left half plane. The poles ej(±ω180)h leads to sustained sinusoidal
oscillations. Thus, ω180 (or ωc) is the frequency of the sustained oscillations in
a marginally stable system. This information can be used for tuning a PID
controller with the Ziegler-Nichols’ frequency response method [4].

11.4.7 Stability analysis in a Bode diagram

It is most common to use a Bode diagram, not a Nyquist diagram, for
frequency response based stability analysis of feedback systems. The Nyquist’s
Stability Criterion says: The closed loop system is marginally stable if the
Nyquist curve (of L) goes through the critical point, which is the point (−1,
0). But where is the critical point in the Bode diagram? The critical point has
phase (angle) −180◦ and amplitude 1 = 0dB. The critical point therefore
constitutes two lines in a Bode diagram: The 0dB line in the amplitude
diagram and the −180◦ line in the phase diagram. Figure 40 shows typical L
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curves for an asymptotically stable closed loop system. In the figure, GM ,
PM , ωc and ω180 are indicated.

ω
(logarithmic)

ω180

ωc

|L|

arg L

[dB]

[degrees]

0 dB

-180
PM

GM

Figure 40: Typical L curves of an asymptotically stable closed loop system with
GM , PM , ωc and ω180 indicated

Example 11.5 Stability analysis in Bode diagram

See Example 11.3. Figure 41 shows a Bode plot of L(ejωh). The stability
margins are shown in the figure. They are

GM = 5.12dB = 1.80 (340)

PM = 35.3◦ (341)

which is in accordance with Example 11.3.

[End of Example 11.5]

A z-transform

In this appendix the capital letter F (z) is used for the z-transformed time
function f(kT ) = f(k). In other sections of this document lowercase letters are
used for both the time function f(k) and its z-transformed function f(z).

A.1 Properties of the z-transform

Linear combination:

k1F1(z) + k2F2(z)⇐⇒ k1f1(k) + k2f2(k) (342)
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Figure 41: Example 11.5: Bode plot of L

Special case:
k1F (z)↔ k1f(k) (343)

Time delay (time shift backward) n time-steps:

z−nF (z) ⇐⇒ f(k − n) (344)

Time advance (time shift forward) n time-steps:

znF (z) ⇐⇒ f(k + n) (345)

Convolution:

F1(z)F2(z) ⇐⇒ f1(k) ∗ f2(k) =
∞X

l=−∞
f1(k − l)f2(l) (346)

Final value theorem:

lim
z→1

(z − 1)F (z) ⇐⇒ lim
k→∞

f(k) (347)

−z dF (z)
dz

⇐⇒ k · f(k) (348)

z

z − 1 F (z) ⇐⇒
kX

n=0

f(n) (349)
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A.2 z-transform pairs

Below are several important z-transform pairs showing discrete-time functions
and their corresponding z-transformations. The time functions are defined for
k ≥ 0.

Unity impulse at time-step k: δ(k) ⇐⇒ zk (350)

Unity impulse at time-step k = 0: δ(0) ⇐⇒ 1 (351)

Unity step at time-step k = 0: 1 ⇐⇒ z

z − 1 (352)

Time exponential: ak ⇐⇒ z

z − a (353)

1− ak ⇐⇒ z (1− a)
(z − 1) (z − a) (354)

khak ⇐⇒ zha

(z − a)2 (355)

a1
k − a2k ⇐⇒ (a1 − a2) z

(z − a1) (z − a2) (356)

e−akh cos bkh ⇐⇒ z
¡
z − e−ah cos bh¢

z2 − (2e−ah cos bh) z + e−2ah (357)

e−akh sin bkh ⇐⇒ ze−ah sin bh
z2 − (2e−ah cos bh) z + e−2ah (358)

1− e−akT
³
cos bkT +

a

b
sin bkT

´
⇐⇒ z (Az +B)

(z − 1) (z2 − (2e−aT cos bT ) z + e−2aT )
(359)

where
A = 1− e−aT cos bT − a

b
e−aT sin bT (360)

and
B = e−2aT +

a

b
e−aT sin bT − e−aT cos bT (361)
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